

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

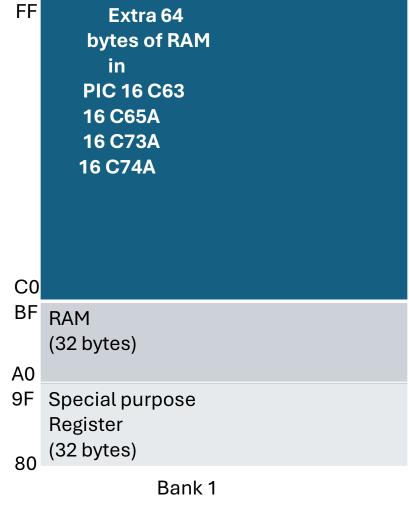
Sub: Microcontroller Programming And Interfacing Subcode:23ECB202 Unit-I

PIC Microcontrollers: History, Features, & Architecture 16F877a or16F8XX Registers File Structure

The Registers

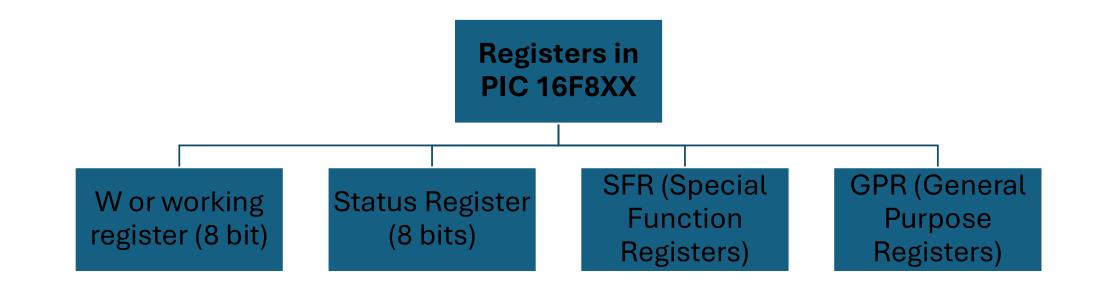
A register is a place inside the PIC that can be written to, read from or both. Think of a register as a piece of paper where you can look at and write information on.





Register File Structure

- Register file → locations that an instruction can access via an address.
- Register file consists of two component:-
 - 1. General purpose register file (same as RAM)
 - 2. Special purpose register file



128 bytes

W or Working Register

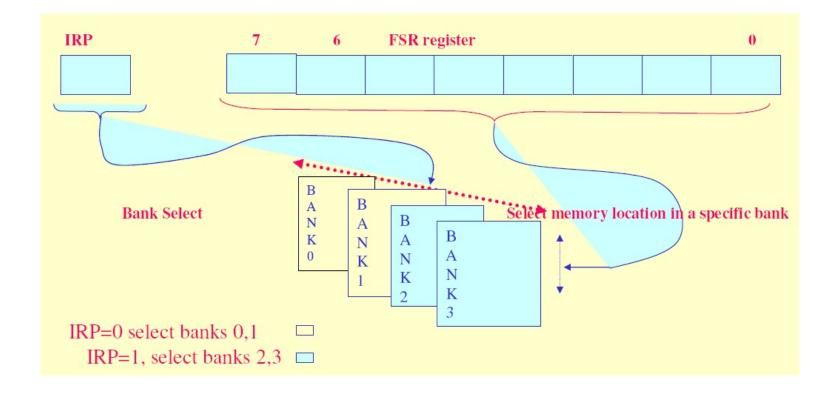
- 8 bits wide
- Contains one of the source operands during the execution of instructions.
- Serve as the destination for the result of the operation.
- Only used for ALU operations..

Status Register (8 bits)

						R/W (x)			Features
STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	Bit name
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

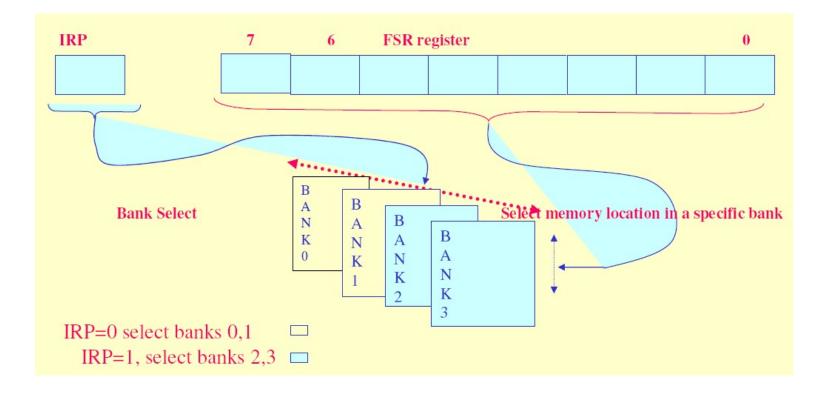
IRP - Bit selects register bank. It is used for indirect addressing.	 1 - Banks 0 and 1 are active (memory location 00h-FFh) 0 - Banks 2 and 3 are active (memory location 100h-1FFh)
RP1,RP0	• Bits select register bank. They are used for direct addressing.
TO - Time-out bit.	 1 - After power-on or after executing CLRWDT instruction which resets watch-dog timer or SLEEP instruction which sets the microcontroller into low-consumption mode. 0 - After watch-dog timer time-out has occurred.
PD - Power-down bit.	 1 - After power-on or after executing CLRWDT instruction which resets watch-dog timer. 0 - After executing SLEEP instruction which sets the microcontroller into low- consumption mode.
Z - Zero bit	 1 - The result of an arithmetic or logic operation is zero. 0 - The result of an arithmetic or logic operation is different from zero.
DC - Digit carry/borrow bit is changed during addition and subtraction if an "overflow" or a "borrow" of the result occurs. C - Carry/Borrow bit is changed during addition and	 1 - A carry-out from the 4th low-order bit of the result has occurred. 0 - No carry-out from the 4th low-order bit of the result has occurred.
subtraction if an "overflow" or a "borrow" of the result occurs, i.e. if the result is greater than 255 or less than 0.	 1 - A carry-out from the most significant bit of the result has occurred. 0 - No carry-out from the most significant bit of the result has occurred.

23ECB202/ PIC16F877A Registers/ Dr. Husna/ ECE/SNSCE


- Microchip has provided only direct addressing mode for the register file with 7-bits address plus remaining 8th and 9th bits frozen in the STATUS REGISTER bits RP1:RP0.
- 11 = Bank 3 (180h-1FFh)
- 10 = Bank 2 (100h-17Fh)
- 01 = Bank 1 (80h-FFh)
- 00 = Bank 0 (00h-7Fh)
 - As shown in figure

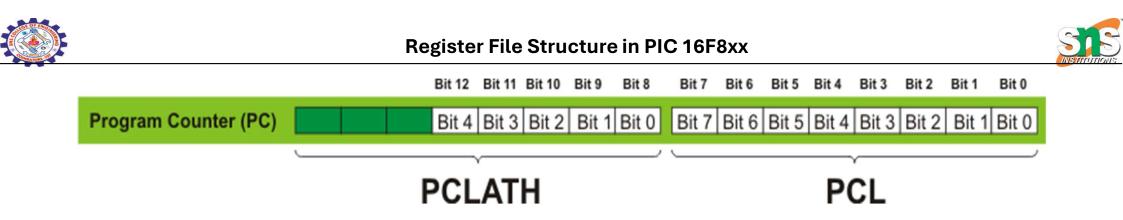
RP1:RP0	Bank
00	0
01	1
10	2
11	3

Use of IPR bit in indirect addressing mode


Indirect addressing mode

- IRP bit is used for indirect addressing.
- The IRP bit allows selecting either
 - 1= Bank 2 & bank 3
 - 0= Bank 0 & bank 1
- The IPR bit and FSR decide the effective 9 bit address. As shown in figure

Use of IPR bit in indirect addressing mode



Special Function Register

PCL and PCLATH Registers: The size of the program memory of the PIC16F887 is 8K. Therefore, it has 8192 locations for program storing. For this reason the program counter must be 13-bits wide (2^13 = 8192). In order that the contents of some location may be changed in software during operation, its address must be accessible through some SFR. Since all SFRs are 8-bits wide, this register is "artificially" created by dividing its 13 bits into two independent registers: PCLATH and PCL.

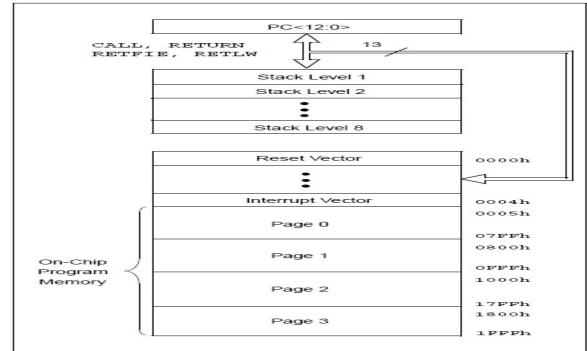
- Eight lower bits (the low byte) come from the PCL register which is readable and writable, whereas five upper bits coming from the PCLATH register are writable only.
- The PCLATH register is cleared on any reset.

PCL

- Program Counter byte.
- PCL is the lower byte of the PC.
- Cause PCLATH contents to be transferred to the PC higher bit locations.
- PC of PIC is associated with an 8-level stack.
- PC always points to the next instruction to be executed.
- In case of call to subroutines, the returned address is pushed onto the stack.
- After the return from called subroutine, this return address is retrieved.
- Stack width and PC width should be same.

Power control register

- Contains the flags which can differentiate between the type of reset occurred namely
 - \circ Power on reset
 - o Brown out reset


		POR	BOR	
--	--	-----	-----	--

Stack

- The entire PIC chip has an area for storing the return addresses.
- This area or unit called Stack is used in some Peripheral interface controllers.

PIC16F87XA Data Memory Organization

- Data memory is divided in two four banks, Each bank holds 128 bytes of addressable memory.
- Contain GPR and SPR.
- The banked arrangement is necessary because there are only 7 bits are available in the instruction word for the addressing of a register, which gives only 128 addresses.
- The selection of the banks are determined by control bits RP1, RP0 in the STATUS registers
- Together the RP1, RP0 and the specified 7 bits effectively form a 9 bit address.

Register File Structure in PIC 16F8xx

File Address

							duress
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD (1)	08h	TRISD (1)	88h		108h		188h
PORTE (1)	09h	TRISE (1)	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General Purpose	117h	General Purpose	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCONO	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7Fh	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1F0h 1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Thanks