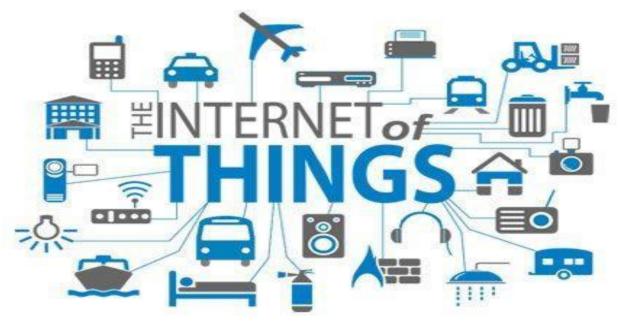


SNS College of Engineering

Redesigning Common Mind & Business Towards Excellence



Accredited by NAAC-UGC with 'A' Grade, Approved by AICTE, Recognized by UGC and Affiliated to Anna University, Chennai

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Internet Of Things

Prepared by Dr.M.Sudha

Associate Professor, ECE SNSCE OF ENGRAPSING

Redesigning Common Mind & Business Towards Excellence

- Machine-to-machine (M2M) refers to the process of communication of a physical object or device at machine with others of the same type, mostly for monitoring but also for control purposes.
- Each machine in an M2M system embeds a smart device.
- The device senses the data or status of the machine, and performs the computation and communication functions.
- A device communicates via wired or wireless systems.
- The communication protocols are 6LowPAN, LWM2M, MQTT, and XMPP. Each communication device is assigned 48-bits Ipv6 address

Redesigning Common Mind & Business Towards Excellence

M2M Communications : M2M vs IoT

- IoT integrates complex M2M communication with the cloud/network, analyses it and takes necessary actions
- M2M must deploy device to device and carry out coordination, monitoring, controlling of devices **without using Internet**.
- IoT **will use Internet**, servers, protocols and cloud based applications
- Example of M2M coordinated movements of tools, robots, drones, refinery operations, sequential control in a production line etc...
- Applications Industrial automation, logistics, smart grids, health and defence, **IIoT**
- IIoT Industrial IoT Manufacturing at multiple locations, railways, mining, agriculture, oil and gas, utilities, transportation etc... along with usage of internet, and softwares for analytics

M2M Communications : M 2 M Architecture

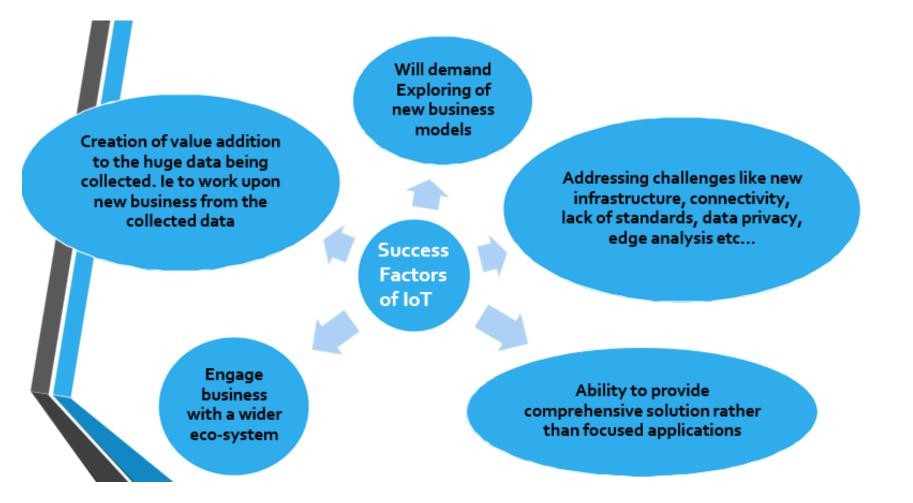
Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

M2M architecture consists of three domains

- 1. M2M device domain
- 2. M2M network domain
- 3. M2M application domain

Three domains of M2M architecture

M2M Communications : Software development tools Redesigning Common Mind & Business Towards Excellence


- Mango Open source M2M web based software
- Mainspring from M2M labs
- DeviceHive is an M2M communication
 framework enables connecting devices
 to IoT web based management

Success Factors of IoT

Redesigning Common Mind & Business Towards Excellence

Examples of IoT /**Application Areas**

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

Features of smart watches

- Ability to make phone call
- WiFi & Bluetooth
- GPS enabled
- Health applications & UV monitors
- Tracks health parameters all the time
- Enables payment using wallet
- Video chat
- News & social networking
- Navigation
- Gyroscope, Accelerometer, heart sensor, UV sensor, skin temp sensor, barometer, light sensor etc...

Examples of IoT /**Application Areas**

- Smart homes A home with sensors and actuators, connected and managed via internet
- Cameras, security sensors, thermostats, smart plugs, light and entertainment systems, smoke detector, energy meter interface (electricity, gas, water), surveillance cameras, speakers, LED lights etc...
- Home automation softwares:
 - Intel based intelligent gateway
 - OpenHAB An Eclipse IoT based project runs on java enabled system
 - The Thing System. Language is "Node.js". Can fit into a raspberry pi

Examples of IoT /**Application Areas**

Redesigning Common Mind & Business Towards Excellence

Smart Cities – an Architectural framework by CISCO

Redesigning Common Mind & Business Towards Excellence

	Smart parking Traffic data acquisition, control and monitoring
S	mart streetlights Smart waste management Health services Fire services Smart surveillance
	↓ Internet, GPS
0	Layer 3: Data collection services, data accumulation (storage) at servers, connected data centre, cloud r enterprise server, data analytics, data element analysis and transformation for data abstraction aggregation and access) for the applications and APIs, collaborations, services and processes involving people, city services and processes)
	Internet, GPS
6	Layer 2: Distributed data capture, processing, storage and analytics at distributed points for scalability and responsiveness to real-time and context-critical data
3	$\uparrow \uparrow 3G, 4G, Internet, Wi-Fi,$
1	Layer 1: Physical devices with sensor networks in parking spaces, hospitals, streets, vehicles, banks,

Redesigning Common Mind & Business Towards Excellence

sign Thinking FrameWork

