
Sub: Microcontroller Programming And Interfacing

Subcode:23ECB202
Unit-I

PIC Microcontrollers: History, Features, & Architecture

Topic: PIC Data Formats and Directives

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

PIC data Type

The PIC microcontroller has only one data type. It is 8 bits, and the
size of each register is also 8 bits.
• The programmer to break down data larger than 8 bits (00 to FFH,

or 0 to 255 in decimal) to be processed by the CPU.
Data format representation
• There are four ways to represent a byte of data in the PIC

assembler. The numbers can be in hex, binary, decimal, or ASCII
formats.

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

Examples
• Use 'H' or 'h' after the number: MOVLW 99H
• Use '0x' or '0X' before the number: MOVLW 0x99
• No prefix or suffix: MOVLW 99
• Use 'h' with single quotes: MOVLW h'99'

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

Hexadecimal Format in PIC Assembly
Here are a few lines of code that use the hex format:
MOVLW 25 ; WREG = 25H
ADDLW 0x11 ; WREG = 25H + 11H = 36H
ADDLW 12H ; WREG = 36H + 12H = 48H
ADDLW H'2A' ; WREG = 48H + 2AH = 72H
ADDLW 2CH ; WREG = 72H + 2CH = 9EH

Binary Numbers in PIC Assembly

• There is only one way to represent binary numbers in a PIC assembler

MOVLW B'10011001' ; WREG = 10011001 or 99 in hex

The lowercase b will also work
Examples:

MOVLW B'00100101' ; WREG = 25H
ADDLW B'00010001' ; WREG = 25H + 11H = 36H

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

Decimal Numbers in PIC Assembly

One way to represent decimal numbers:
MOVLW D'12' ; WREG = 00001100 or 0C in hex

The lowercase d will also work.

Unlike other assemblers (8051, x86), PIC requires D'12' instead of just
12.

MOVLW D'37' ; WREG = 25H (37 decimal is 25 hex)
ADDLW D'17' ; WREG = 37 + 17 = 54 (54 decimal = 36H)
MOVLW .12 ; WREG = 00001100 = 0CH = 12

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

ASCII Character Representation in PIC Assembly
To represent ASCII data in a PIC assembler, we use the letter A as follows:

MOVLW A'2' ; WREG = 00110010 or 32 in hex (See Appendix F)
Lowercase 'a' will also work.
Single quotes are used for single ASCII characters.
Double quotes are used for ASCII strings.

More Examples:
MOVLW A'9' ; WREG = 39H (hex for ASCII '9')
ADDLW A'1' ; WREG = 39H + 31H = 70H (31H is ASCII '1')
MOVLW '9' ; WREG = 39H (another way to represent ASCII)
To define ASCII strings (more than one character), use the DB (define byte)
directive.

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

Assembler Directives
While instructions tell the CPU what to do, directives (also called pseudo-instructions) provide
guidance to the assembler.

MOVLW and ADDLW are CPU instructions.
EQU, ORG, and END are assembler directives.
EQU (Equate)

Used to define a constant value or a fixed address. Unlike variables, EQU does not allocate
memory; it assigns a label to a constant.

COUNT EQU 0x25
...
MOVLW COUNT ; WREG = 25H

When executing MOVLW COUNT, WREG will be loaded with 25H.

• Advantage of using EQU: If the value needs to change, updating COUNT EQU will reflect the
change everywhere in the program.

SET
• Also used to define a constant or fixed address.
• Difference from EQU: The value assigned using SET can be reassigned later.

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

Example

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

ORG (Origin) Directive in PIC Assembly
The ORG (Origin) directive is used in PIC
assembly language to specify the
starting address for code or data in
program memory or RAM. It tells the
assembler where to place the following
instructions in memory.
Usage of ORG
• The default start address for program

memory in PIC microcontrollers is
0x0000.

• When using interrupts, ORG can set
different starting points.

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

ORG 0x00 ; Start of the main program
GOTO MAIN ; Jump to the main program

ORG 0x04 ; Interrupt vector location
GOTO ISR ; Jump to the interrupt service routine

ORG 0x10 ; Main program start
MAIN:

MOVLW 0x55 ; Load 55H into WREG
GOTO MAIN ; Infinite loop

ORG 0x20 ; Interrupt Service Routine (ISR)
ISR:

MOVLW 0xAA ; Load AA into WREG
RETFIE ; Return from interrupt

END Directive
• The END directive marks the end of the assembly source code.

• It tells the assembler that no more instructions follow.

• Any lines written after END are ignored.

Example:

ORG 0x00

GOTO MAIN

ORG 0x10

MAIN:

MOVLW 0x55

GOTO MAIN

END ; Marks the end of the program

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

LIST Directive

The LIST directive controls assembler output formatting.
It can define processor type, number formatting, and

macro expansions.
Ex: LIST option

LIST P=16F877A → Sets microcontroller type.
LIST R=DEC → Displays values in decimal format.
LIST M=ON → Enables macro expansion.

23ECB202/ Microcontroller Programming and Interfacing/
PIC Data Formats and Directives/ Dr.Husna/ AP/ECE/SNSCE

