

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

Course Name – 23ADT202 Fundamental of Data science and Analytics

II Year / IV Semester

Unit 2 – Descriptive Analytics

Regression

Regression / Descriptive Analytics/AI&DS SNSCE

Introduction to Regression

- •Regression is a statistical technique to study the relationship between variables.
- •It predicts the dependent variable (output) based on independent variables (predictors).
- •Widely used in forecasting and understanding variable relationships in various fields.
- •Essential in business, healthcare, and engineering for decision-making.

Types of Regression

- •Linear Regression: Predicts a dependent variable based on one independent variable. •Multiple Linear Regression: Uses multiple independent variables for predictions. •Logistic Regression: Used for binary outcomes like "yes/no" or "pass/fail" predictions.
- •Each type has specific use cases and applications in different industries.

Linear Regression Overview

- •Linear regression examines the relationship between two variables.
- •The formula for linear regression is: $Y = \beta_0 + \beta_1 X + \epsilon$.
- •Y is the dependent variable, X is the independent variable, β_0 is the intercept, and β_1 is the slope.
- •The error term (ϵ) accounts for deviations from the line.

Steps in Linear Regression

- •Collect Data: Gather independent and dependent variable data. •Visualize Data: Plot data to check for linear trends. •**Fit the Model**: Estimate the coefficients (β_0 and β_1)
- Evaluate the Model: Assess the model using metrics like

R² and MSE.

Regression / Descriptive Analytics/AI&DS / SNSCE

Example of Linear Regression

- •Example: Predicting sales based on advertising spend.
- •Dataset: X = [10, 20, 30, 40, 50], Y = [15, 25, 35, 45, 55].
- •Perform linear regression to estimate the coefficients.
- •Use Python to implement and analyze the results.

Model Evaluation - R² and MSE

- •R² (Coefficient of Determination): Measures how well the independent variable explains variability in the dependent variable. • R² ranges from 0 (no fit) to 1 (perfect fit). •MSE (Mean Squared Error): Measures the average squared difference between predicted and actual values.
- •Lower MSE indicates better model accuracy.

Applications of Regression

- •Business: Predict sales and market trends.
- •Healthcare: Forecast patient recovery times based on treatments.
- •Education: Analyze how study hours impact exam performance.
- •Regression can improve decision-making and optimize operations in various sectors.

Exercise 1 - Linear Regression

- •Given dataset: X = [5, 10, 15, 20], Y = [10, 20, 25, 30].
- •Task: Calculate the intercept (β_0) and slope (β_1) of the regression line.
- •This exercise demonstrates the basic process of fitting a linear regression model.
- •Understanding these values helps in predicting the dependent variable.

Exercise 2 - Plotting a Regression Line

- Dataset: X = [1, 2, 3, 4, 5], Y = [3, 6, 9, 12, 15].
- •Task: Plot the regression line for the given data.
- •This exercise visualizes how the regression line fits the data points. •Helps in understanding the relationship between X and Y and evaluating the model's accuracy.

THANK YOU

Regression / Descriptive Analytics/AI&DS / SNSCE

