

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

Course Name – 23ADT202 Fundamental of Data science and Analytics

II Year / IV Semester

Unit 2 – Descriptive Analytics

Standard error of estimation

Standard error of estimation / Descriptive Analytics/AI&DS / SNSCE

Introduction to SEE

•The Standard Error of Estimate (SEE) measures the accuracy of predictions made by a regression model.

It quantifies the average distance between observed and predicted values. A smaller SEE indicates a better fit between the regression model and data. SEE helps assess the model's prediction reliability.

Definition of SEE

SEE is the standard deviation of residuals in a regression model. Residuals are the differences between observed values (Y) and predicted values (\hat{Y}). Formula:

SEE = $\sqrt{[\Sigma(Yi - \hat{Y}i)^2 / (n - 2)]}$

Steps to Calculate SEE

1. Calculate the predicted values using the regression equation.

- 2. Compute the residuals (differences between observed and predicted).
- 3. Square the residuals and sum them.
- 4. Divide the sum by (n 2), then take the square root.

Example Dataset

X = [1, 2, 3, 4, 5] Y = [2, 4, 5, 4, 5] Use these values to calculate the SEE for a regression model. SEE will help assess how well the model fits the data.

Standard error of estimation/ Descriptive Analytics/AI&DS / SNSCE

Interpreting SEE - Low SEE

A low SEE indicates that the data points are close to the regression line. This represents a good fit between the model and the data. It suggests that the model is making accurate predictions. A low SEE is desirable for reliable regression analysis.

Interpreting SEE - High SEE

A high SEE indicates significant deviations between observed and predicted values. This represents a poor fit between the model and the data. The model may not be accurately capturing the relationship between variables. High SEE suggests that predictions are unreliable.

Visualization of SEE

A scatter plot with the regression line and residual lines can help visualize SEE. The closer the residuals are to zero, the smaller the SEE. Large residuals indicate higher SEE and a poorer model fit. Residual plots help detect patterns in errors that the model cannot capture.

Applications of SEE

1. **Business:** Evaluate sales forecast accuracy based on advertising spend. **2.Healthcare:** Assess the reliability of models predicting patient recovery times. **3.Education:** Measure the accuracy of student performance predictions based on study hours.

SEE helps in improving decision-making across industries.

Standard error of estimation / Descriptive Analytics / AI&DS / SNSCE

Exercise & Conclusion

Exercise 1: Calculate the SEE for X = [10, 20, 30, 40], Y = [15, 25, 35, 45], Predicted Y = [14, 24, 34, 44]. Exercise 2: Plot the residuals for X = [1, 2, 3, 4], Y = [5, 6, 7, 8], Predicted Y = [5.2, 5.8, 5.8]7.1, 7.9].

SEE provides valuable insights into the quality of regression models. Understanding SEE enhances model evaluation and prediction accuracy.

THANK YOU

Standard error of estimation/ Descriptive Analytics/AI&DS / SNSCE