

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

Course Name – 23ADT202 Fundamental of Data science and Analytics

II Year / IV Semester

Unit 2 – Descriptive Analytics

Multiple regression equations

Multiple regression equations/ **Descriptive Analytics/AI&DS / SNSCE**

What is Multiple Regression?

- Multiple regression predicts a dependent variable (Y) using multiple independent variables $(X_1, X_2, ...)$.
- •It extends simple linear regression to handle more than one independent variable. •The goal is to model the relationship between the variables and make predictions.
- •It's widely used in fields like business, healthcare, and real estate.

Multiple Regression Equation?

The general form of a multiple regression equation is: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \varepsilon$ Y is the dependent variable; X_1 , X_2 ,... are independent variables. β_0 is the intercept, and β_1 , β_2 ,... are coefficients for each independent variable. ε represents the error term or residuals.

Assumptions of Multiple Regression

Linearity: The relationship between Y and X is linear. •Independence: Observations should be independent of each other. •Homoscedasticity: Residuals have constant variance. •Normality: Residuals follow a normal distribution. •No Multicollinearity: Independent variables should not be highly correlated.

Steps to Perform Multiple Regression

Prepare the Data: Clean the dataset, identify variables. Fit the Model: Estimate coefficients using least squares method. **Interpret the Coefficients**: Understand how each independent variable influences Y. **Evaluate the Model**: Use metrics like R², Adjusted R², and MSE.

Multiple regression equations/ Descriptive Analytics/AI&DS / SNSCE

Dataset: Predict house prices (Y) based on size (X_1) and number of bedrooms (X_2) . Sample Data:

- Size (X₁): 1500, 2000, 2500, 3000 sqft.
- Bedrooms (X₂): 3, 4, 4, 5.
- Price (Y): \$300,000, \$400,000, \$450,000, \$500,000.
- •Objective: Build a regression model to predict prices.

Python Implementation (Code)

import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression # Dataset data = {"Size": [1500, 2000, 2500, 3000], "Bedrooms": [3, 4, 4, 5], "Price": [300000, 400000, 450000, 500000]} df = pd.DataFrame(data) # Independent and dependent variables X = df[["Size", "Bedrooms"]] Y = df["Price"]# Create and fit the model model = LinearRegression() model.fit(X, Y) # Coefficients and intercept print("Intercept:", model.intercept_) print("Coefficients:", model.coef_)

This code uses Python to create and fit a multiple regression model.

Multiple regression equations/ Descriptive Analytics/AI&DS / SNSCE

Interpreting Results

Intercept (β_0): The predicted price when Size and Bedrooms are 0 (Y = 87,500).

- Coefficients (β_1, β_2) :
 - Size (β_1): For each extra sqft, price increases by \$100.

• Bedrooms (β_2): For each extra bedroom, price increases by \$25,000. •**Predictions**: The model can predict house prices based on Size and Bedrooms.

Model Evaluation Metrics

R²: The proportion of variance in Y explained by X variables. Adjusted R²: Adjusts R² for the number of predictors. **MSE**: Mean Squared Error measures prediction accuracy. These metrics help assess how well the model fits the data.

Application & Exercise

Applications: Multiple regression is used in business, healthcare, and real estate. Exercise:

Calculate the regression equation for a given dataset.

Predict revenue for $X_1 = 2500$, $X_2 = 18$.

By applying the steps, you can make predictions and evaluate models in various domains.

THANK YOU

Multiple regression equations/ Descriptive Analytics/AI&DS / SNSCE