

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of AI &DS

Course Name – 19AD602 DEEP LEARNING

III Year /VI Semester

Unit 1-INTRODUCTION Topic: Training a network

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNS INSTITUTIONS

Case Study

Task: Train a network to predict house prices based on size and location. Approach: Use mean squared error (MSE) as the loss function, update weights using backpropagation, and optimize using stochastic gradient descent.

Outcome: The network minimizes the error and predicts prices with 90% accuracy on a test dataset.

Neural Network

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

error = actual - prediction

Example

Input	Output
0	0
1	6
2	12
3	18
4	24

Here's a straightforward dataset. Let's build a neural network to predict the outputs, given the inputs

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

4/18

TITUTIONS

		(P	redicted outp	ut
6	Input	Output	w=3	w=6	w=9
1	0	0	0	0	0
18	1	6	3	6	9
ſ	2	12	6	12	18
	3	18	9	18	27
	4	24	12	24	36

We, as humans, can know just by a look at the data that our weight should be 6. But how does the machine come to this conclusion?

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Loss function

The loss function is a measurement of error which defines the precision lost on comparing the predicted output to the actual output

loss = [(actual output) - (predicted output)]²

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Loss function

©Simplilearn. All rights reserved.

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

W=6	W=9		
12	18		
$(12-12)^2 = 0$	(12-18) ² = 36		

Gradient descent

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

W=6	W=9		
12	18		
$(12-12)^2 = 0$	(12-18)2= 36		

This time the slope is negative. Hence, another random point towards its left is chosen

Weight

8/18

FITUTIONS

Backpropagation

The magnitude of loss at any point on our graph, combined with the slope is fed back to the network

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

9/18

FITUTIONS

We continue checking slopes at various points in this manner

> A random point on the graph gives a loss value of 36 with a positive slope

.

36 is quite a large number. This means our current weight needs to change by a large number

A positive slope indicates that the change in weight must be positive

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Backpropagation

After multiple iterations of backpropagation, our weights are assigned the appropriate value

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Neural Network

As mentioned earlier, our predicted output is compared against the actual output

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

actual probabilities

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Neural Network

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Neural Network

The weights are further adjust to identify 'b' and 'c' too

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

Activity

Objective: Understand loss calculation and weight updates manually.

- 1. Assign random weights and calculate predictions for a small dataset; compute the loss (e.g., MSE).
- 2. Use backpropagation rules to adjust the weights by subtracting gradients.
- 3. Repeat for a few epochs and observe how the loss decreases over iterations.

THANK YOU

GULSHAN BANU.A/ AP/AI AND DS /TRAINING A NETWORK/SNSCE

