

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

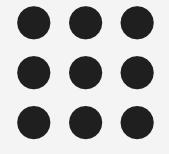
Department of AI &DS

Course Name – 19AD602 DEEP LEARNING

III Year / VI Semester

Unit 2-DEEP NETWORKS

Topic: Back propagation



Case Study

An e-commerce company uses a deep neural network to predict customer purchase behavior. The backpropagation algorithm updates the network's weights by minimizing the error between predicted and actual outcomes, improving the recommendation accuracy by 25%. This optimization enhanced user engagement and sales.

Back Propagation Algorithm

BACKPROPAGATION (training_example, η, n_{in}, n_{out}, n_{hidden})

- Each training example is a pair of the form (x, t), where (x) is the vector of network input values, and (t) is the vector of target network output values.
- η is the learning rate (e.g., 0.05).
- n_i, is the number of network inputs,
- n_{hidden} the number of units in the hidden layer, and
- n_{out} the number of output units.
- The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji}

Back Propagation Algorithm

- Create a feed-forward network with n_i inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers
- Until the termination condition is met, Do
 - For each (x, t), in training examples, Do
 - Propagate the input forward through the network:
 - 1. Input the instance x, to the network and compute the output o_u of every unit u in the network.
 - Propagate the errors backward through the network
 - 2. For each network unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$$

3. For each network unit h, calculate its error term δ_h

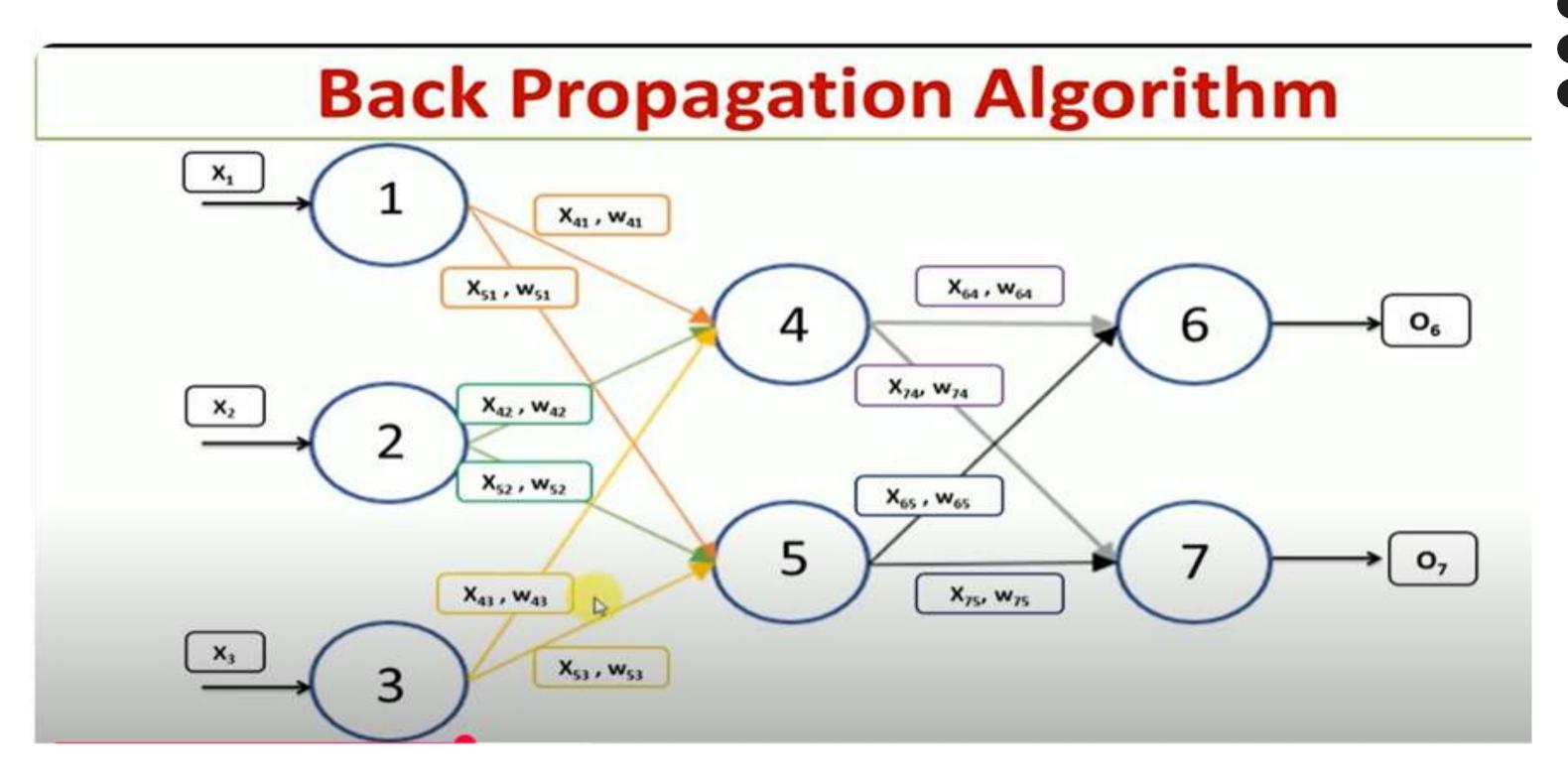
$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

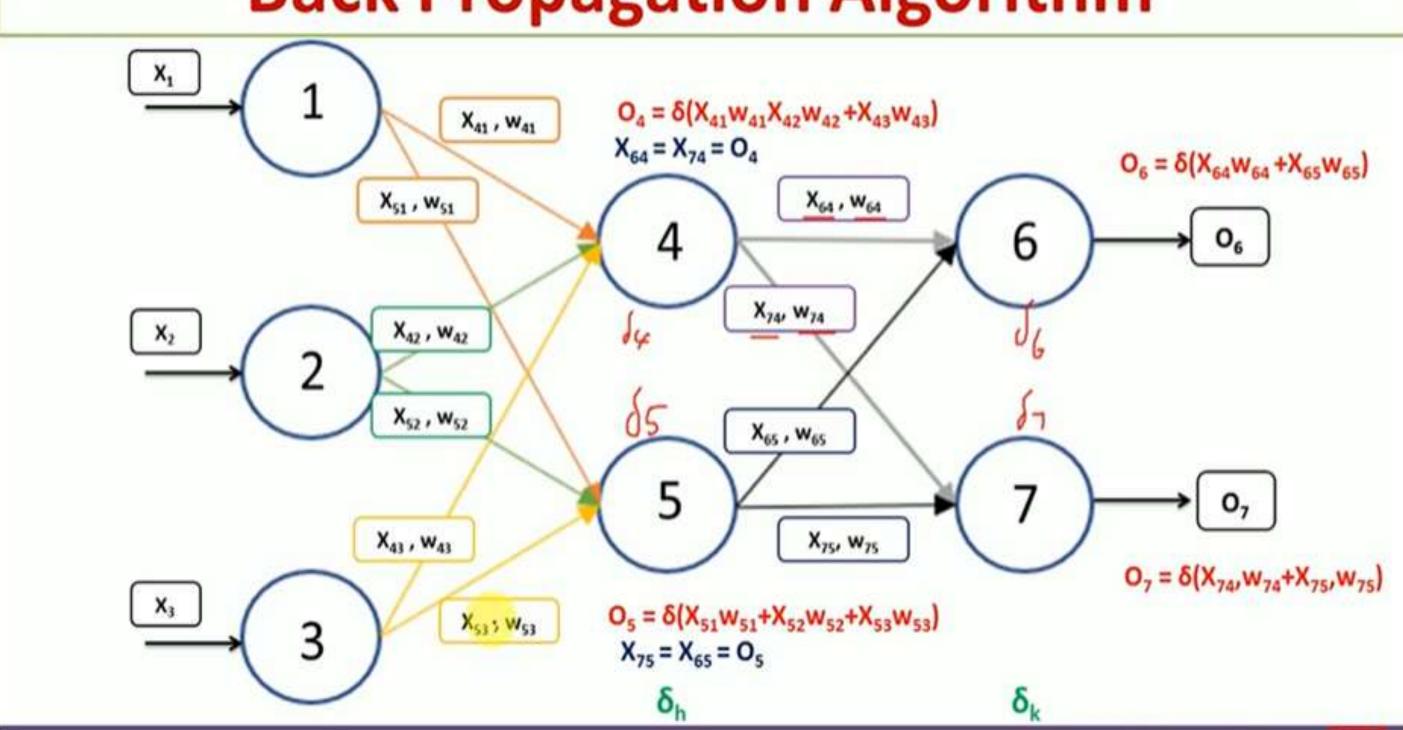
4. Update each network weight w_{ji}

$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

Where

$$\Delta w_{\rm ji} = \eta \delta_j x_{\rm ji}$$





Derivation of Back Propagation Algorithm

- To derive the equation for updating weights in back propagation algorithm, we use Stochastic gradient descent rule.
- Stochastic gradient descent involves iterating through the training examples one at a time, for each training example d descending the gradient of the error Ed with respect to this single example.
- In other words, for each training example **d** every weight wji is updated by adding to it Δw_{ij} .
- · That is,

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ii}}$$

Derivation of Back Propagation Algorithm

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

 where Ed is the error on training example d, that is half the squared difference between the target output and the actual output over all output units in the network,

$$E_{d}(\vec{w}) \equiv \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

• Here outputs is the set of output units in the network, \mathbf{t}_k is the target value of unit k for training example \mathbf{d} , and \mathbf{o}_k is the output of unit k given training example \mathbf{d} .

Derivation of Back Propagation Algorithm

Notation Used:

```
x_{ji} = the i<sup>th</sup> input to unit j

w_{ji} = the weight associated with the i<sup>th</sup> input to unit j

net_j = \sum_i w_{ji} X_{ji} (the weighted sum of inputs for unit j)

o_j = the output computed by unit j

t_j = the target output for unit j

\sigma = the sigmoid function

outputs = the set of units in the final layer of the network

Downstream(j) = the set of units whose immediate inputs include the output of unit j
```

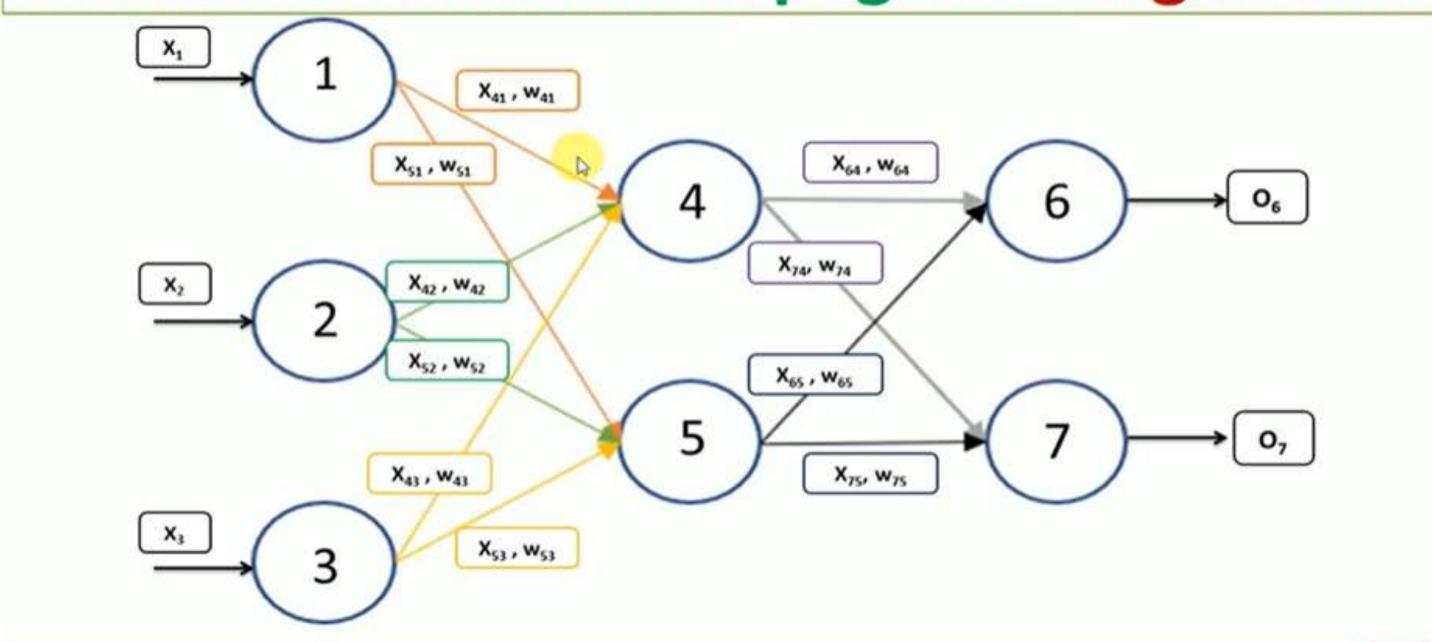

Derivation of Back Propagation Algorithm

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

To begin, notice that weight wji can influence the rest of the network only through netj.
 Therefore, we can use the chain rule to write,

Derivation of Back Propagation Algorithm



Derivation of Back Propagation Algorithm

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

To begin, notice that weight wji can influence the rest of the network only through netj.
 Therefore, we can use the chain rule to write,

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= \frac{\partial E_d}{\partial net_i} x_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial net_i} x_{ji}$$

$$net_j = \sum_i w_{ji} X_{ji}$$

$$\frac{\partial net_j}{\partial w_{ji}} = x_{ji}$$

• Our remaining task is to derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$

IN EXCEPTION OF PARTY AND PROPERTY.

Derivation of Back Propagation Algorithm

To derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$

We consider two cases in turn:

- Case 1, where unit j is an output unit for the network, and
- Case 2, where unit j is an internal unit of the network.

Derivation of Back Propagation Algorithm

Case 1: Training Rule for Output Unit Weights

Just as wji can influence the rest of the network only through net_j, net_j can influence the network only through oj. Therefore, we can invoke the chain rule again to write,

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} \qquad \frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2 \qquad \frac{\partial o_j}{\partial (net_j)} = \frac{\partial \sigma(net_j)}{\partial (net_j)} = \frac{\partial \sigma(net_j)}{\partial (net_j)} = \sigma(x) (1 - \sigma(x))$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2 \qquad = o_j (1 - o_j)$$

$$= \frac{1}{2} 2(t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j} \qquad = -(t_j - o_j) o_j (1 - o_j)$$

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial}{\partial o_j} (1 - o_j) o_j (1 - o_j)$$

Derivation of Back Propagation Algorithm

Case 1: Training Rule for Output Unit Weights

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

$$\Delta w_{ji} = -\eta \ \frac{\partial E_d}{\partial net_j} \ x_{ji}$$

$$\Delta w_{ji} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji}$$

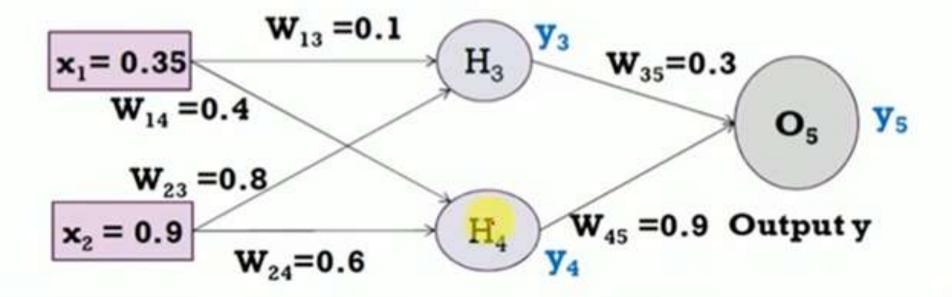
$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji}$$

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) \ o_j (1 - o_j)$$

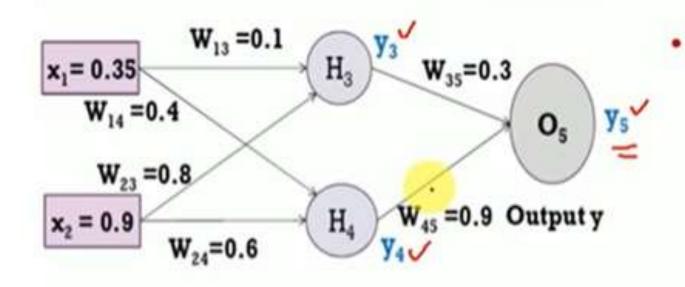
$$\delta_j = (t_j - o_j) \ o_j (1 - o_j)$$

Back Propagation Solved Example - 1

 Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network.
 Assume that the actual output of y is 0.5 and learning rate is 1.
 Perform another forward pass.



Back Propagation Solved Example - 1



Error =
$$y_{\text{target}} - y_5 = -0.19$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_{j} = \sum_{j} (w_{i,j} * x_{i}) \qquad y_{j} = F(a_{j}) = \frac{1}{1 + e^{-a_{j}}}$$

$$a_{1} = (w_{13} * x_{1}) + (w_{23} * x_{2})$$

$$= (0.1 * 0.35) + (0.8 * 0.9) = 0.755$$

$$y_{3} = f(a_{1}) = 1/(1 + e^{-0.755}) = 0.68$$

$$a_2 = (w_{14} * x_1) + (w_{24} * x_2)$$

$$= (0.4 * 0.35) + (0.6 * 0.9) = 0.68$$
 $y_4 = f(a_2) = 1/(1 + e^{-0.68}) = 0.6637$
 $a_3 = (w_{35} * y_3) + (w_{45} * y_4)$

$$y_5 = f(a_3) = 1/(1 + e^{-0.801}) = 0.69$$
 (Network Output)

Back Propagation Solved Example - 1

Each weight changed by:

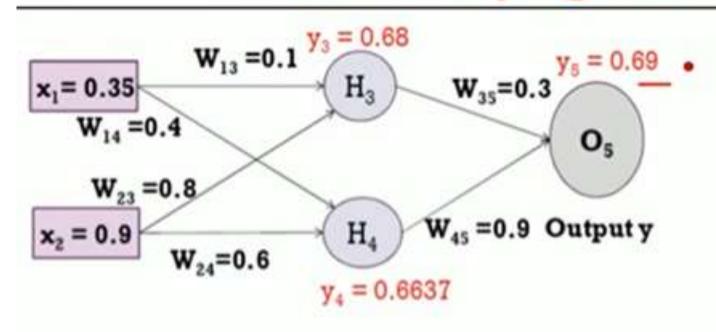
$$\Delta w_{ji} = \underline{\eta} \delta_j o_i$$

$$\sqrt{\delta_j} = \underline{o_j (1 - o_j)} (t_j - o_j) \qquad \text{if } \underline{j} \text{ is an output unit}$$

$$\sqrt{\delta_j} = \underline{o_j (1 - o_j)} \sum_k \underline{\delta_k} w_{kj} \qquad \text{if } \underline{j} \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- tj is the correct teacher output for unit j
- δj is the error measure for unit j

Back Propagation Solved Example - 1



Backward Pass: Compute $\delta 3$, $\delta 4$ and $\delta 5$.

For output unit:

$$\delta_5 = y(1-y) (y_{\text{target}} - y)$$

= 0.69*(1-0.69)*(0.5-0.69)= -0.0406

For hidden unit:

$$\delta_3 = y_3(1-y_3) w_{35} * \delta_5$$

= 0.68*(1 - 0.68)*(0.3 * -0.0406) = -0.00265

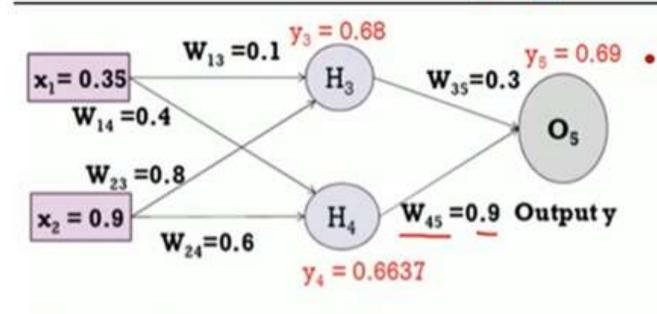
$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j) (t_j - o_j)$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj}$$

if j is an output unit $\delta_4 = y_4(1-y_4)w_{45} * \delta_5$ = 0.6637*(1 - 0.6637)* (0.9 * -0.0406) = -0.0082 if j is a hidden unit

Back Propagation Solved Example - 1



Backward Pass: Compute $\delta 3$, $\delta 4$ and $\delta 5$.

For output unit:

$$\delta_5 = y(1-y) (y_{\text{target}} - y)$$

= 0.69*(1-0.69)*(0.5-0.69)= -0.0406

For hidden unit:

$$\delta_3 = y_3(1-y_3) w_{35} * \delta_5$$

= 0.68*(1 - 0.68)*(0.3 * -0.0406) = -0.00265

$$\delta_4 = y_4(1-y_4)w_{45} * \delta_5$$

= 0.6637*(1 - 0.6637)* (0.9 * -0.0406) = -0.0082

Compute new weights

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\Delta w_{45} + \eta \delta_5 y_4 = 1 * -0.0406 * 0.6637 = -0.0269$$

 $w_{45} + \psi_{45} + \psi_{45}$

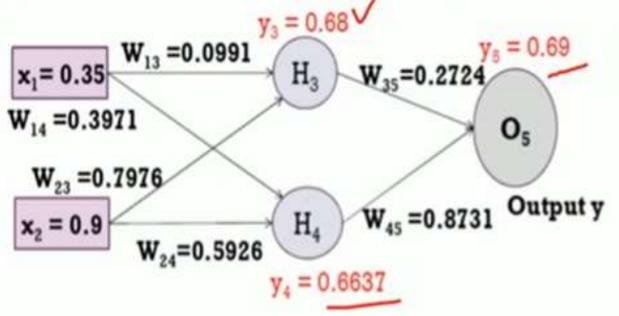
$$\Delta w_{14} = \eta \delta_4 x_1 = 1 * -0.0082 * 0.35 = -0.00287$$

 $w_{14} \text{ (new)} = \Delta w_{14} + w_{14} \text{ (old)} = -0.00287 + 0.4 = 0.3971$

Back Propagation Solved Example - 1

Similarly, update all other weights

i	j	w _{ij}	δ_{i}	$\mathbf{x_i}$	η	Updated w _{ij}
1	3	0.1	-0.00265	0.35	1	0.0991
2	3	0.8	-0.00265	0.9	1	0.7976
1	4	0.4	-0.0082	0.35	1	0.3971
2	4	0.6	-0.0082	0.9	1	0.5926
3	5	0.3	-0.0406	0.68	1	0.2724
4	5	0.9	-0.0406	0.6637	1	0.8731



 $y_4 = 0.6637$

Error =
$$y_{\text{target}} - y_5 = -0.182$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_{j} (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

= $(0.0991 * 0.35) + (0.7976 * 0.9) = 0.7525$
 $y_3 = f(a_1) = 1/(1 + e^{-0.7525}) = 0.6797$

$$a_2 = (w_{14} * x_1) + (w_{24} * x_2)$$

= $(0.3971 * 0.35) + (0.5926 * 0.9) = 0.6723$
 $y_4 = f(a_2) = 1/(1 + e^{-0.6723}) = 0.6620$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.2724 * 0.6797) + (0.8731 * 0.6620) = 0.7631$
 $y_5 = f(a_3) = 1/(1 + e^{-0.7631}) = 0.6820$ (Network Output)

Activity

Train a deep neural network on a dataset (e.g., predicting housing prices) and visualize how backpropagation adjusts weights by tracking changes in loss over epochs. Compare results with and without proper weight updates.

THANK YOU