
Parser

Parser is a compiler that is used to break the data into smaller elements coming from

lexical analysis phase.

A parser takes input in the form of sequence of tokens and produces output in the

form of parse tree.

Parsing is of two types: top down parsing and bottom up parsing.

Top down paring

o The top down parsing is known as recursive parsing or predictive parsing.

o Bottom up parsing is used to construct a parse tree for an input string.

o In the top down parsing, the parsing starts from the start symbol and transform

it into the input symbol.

Parse Tree representation of input string "acdb" is as follows:

Bottom up parsing

o Bottom up parsing is also known as shift-reduce parsing.

o Bottom up parsing is used to construct a parse tree for an input string.

o In the bottom up parsing, the parsing starts with the input symbol and construct

the parse tree up to the start symbol by tracing out the rightmost derivations

of string in reverse.

Example

Production

1. E → T

2. T → T * F

3. T → id

4. F → T

5. F → id

Parse Tree representation of input string "id * id" is as follows:

Bottom up parsing is classified in to various parsing. These are as follows:

1. Shift-Reduce Parsing

2. Operator Precedence Parsing

3. Table Driven LR Parsing

a. LR(1)

b. SLR(1)

c. CLR (1)

d. LALR(1)

Shift reduce parsing

o Shift reduce parsing is a process of reducing a string to the start symbol of a

grammar.

o Shift reduce parsing uses a stack to hold the grammar and an input tape to hold

the string.

o Sift reduce parsing performs the two actions: shift and reduce. That's why it is

known as shift reduces parsing.

o At the shift action, the current symbol in the input string is pushed to a stack.

o At each reduction, the symbols will replaced by the non-terminals. The symbol

is the right side of the production and non-terminal is the left side of the

production.

Example:

Grammar:

1. S → S+S

2. S → S-S

3. S → (S)

4. S → a

Input string:

1. a1-(a2+a3)

Parsing table:

There are two main categories of shift reduce parsing as follows:

1. Operator-Precedence Parsing

2. LR-Parser

Operator precedence parsing

Operator precedence grammar is kinds of shift reduce parsing method. It is applied to

a small class of operator grammars.

A grammar is said to be operator precedence grammar if it has two properties:

o No R.H.S. of any production has a∈.

o No two non-terminals are adjacent.

Operator precedence can only established between the terminals of the grammar. It

ignores the non-terminal.

There are the three operator precedence relations:

a ⋗ b means that terminal "a" has the higher precedence than terminal "b".

a ⋖ b means that terminal "a" has the lower precedence than terminal "b".

a ≐ b means that the terminal "a" and "b" both have same precedence.

Precedence table:

Parsing Action

o Both end of the given input string, add the $ symbol.

o Now scan the input string from left right until the ⋗ is encountered.

o Scan towards left over all the equal precedence until the first left most ⋖ is

encountered.

o Everything between left most ⋖ and right most ⋗ is a handle.

o $ on $ means parsing is successful.

Example

Grammar:

1. E → E+T/T

2. T → T*F/F

3. F → id

Given string:

1. w = id + id * id

Let us consider a parse tree for it as follows:

On the basis of above tree, we can design following operator precedence table:

Now let us process the string with the help of the above precedence table:

	Parser
	Top down paring
	Bottom up parsing
	Example

	Shift reduce parsing
	Example:

	Operator precedence parsing
	There are the three operator precedence relations:
	Precedence table:
	Parsing Action
	Example

