
Puzzle: Reverse a Linked List in Groups 

You are given a linked list and a positive integer k. Your task is to reverse every group of k 

nodes in the linked list. If there are fewer than k nodes remaining at the end of the list, leave 

them as they are. 

Details: 

1. Input: 

o A singly linked list. 

o An integer k, which specifies the size of each group to be reversed. 

2. Output: 

o The head of the modified linked list after reversing the nodes in each group of 

size k. 

Example: 

 Given the linked list 1 -> 2 -> 3 -> 4 -> 5 and k = 3, the output should be 3 -> 2 

-> 1 -> 4 -> 5. The first group of k=3 nodes (1 -> 2 -> 3) is reversed, while the 

remaining nodes (4 -> 5) are left unchanged. 

 Given the linked list 1 -> 2 -> 3 -> 4 -> 5 and k = 2, the output should be 2 -> 1 

-> 4 -> 3 -> 5. The nodes are reversed in pairs. 

Example Inputs and Outputs: 

1. reverse_k_group(1 -> 2 -> 3 -> 4 -> 5, 3) should return 3 -> 2 -> 1 -> 4 -> 

5. 

2. reverse_k_group(1 -> 2 -> 3 -> 4 -> 5, 2) should return 2 -> 1 -> 4 -> 3 -> 

5. 

3. reverse_k_group(1 -> 2 -> 3 -> 4 -> 5, 5) should return 5 -> 4 -> 3 -> 2 -> 

1. 

Hints: 

 You might need to use extra pointers to handle the reversal of nodes in groups. 

 Consider how to connect the reversed groups with the rest of the list. 

Puzzle: Merge Two Sorted Linked Lists 

You are given two linked lists, each sorted in ascending order. Your task is to merge these two 

linked lists into a single sorted linked list. 

Details: 

1. Input: 



o Two singly linked lists, list1 and list2, where each list is sorted in ascending 

order. 

2. Output: 

o A single sorted linked list that contains all the nodes from list1 and list2, also 

sorted in ascending order. 

Example: 

 Given the linked lists: 

o list1: 1 -> 3 -> 5 

o list2: 2 -> 4 -> 6 

The merged linked list should be: 

o 1 -> 2 -> 3 -> 4 -> 5 -> 6 

 Given the linked lists: 

o list1: 1 -> 2 -> 3 

o list2: 4 -> 5 -> 6 

The merged linked list should be: 

o 1 -> 2 -> 3 -> 4 -> 5 -> 6 

Example Inputs and Outputs: 

1. merge_sorted_lists(1 -> 3 -> 5, 2 -> 4 -> 6) should return 1 -> 2 -> 3 -> 4 

-> 5 -> 6. 

2. merge_sorted_lists(1 -> 2 -> 3, 4 -> 5 -> 6) should return 1 -> 2 -> 3 -> 4 

-> 5 -> 6. 

3. merge_sorted_lists(1 -> 5, 2 -> 3 -> 4) should return 1 -> 2 -> 3 -> 4 -> 

5. 

Hints: 

 Use two pointers to traverse each linked list and compare nodes to build the merged list. 

 Be sure to handle cases where one list is empty. 

 


