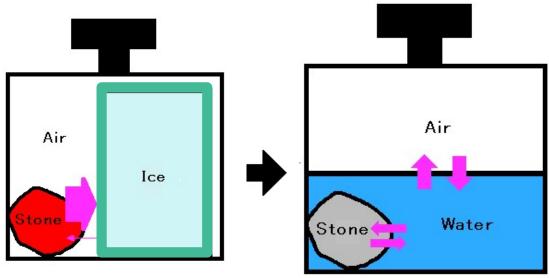


LAWS OF THERMODYNAMCIS

CLAUSIUS INEQUALITY



EQUILIBRIUM

Every system in this universe spontaneously move towards equilibrium.

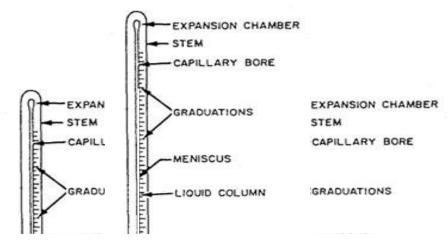
Thermal equilibrium refers to equality of temperatures.

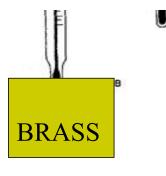
Thermal equilibrium is the subject of the Temperature measurement.

III SEM- APPLIED THERMODTNAMICS-UNIT I ZEROTH LAW OF THYERMODYNAMICS/DR.R.SUDHAKARAN

ZEROTH LAW OF THERMODYNAMICS

The "zeroth law" states that two thermodynamic systems in thermal equilibrium with the same environment are in thermal equilibrium with each other.

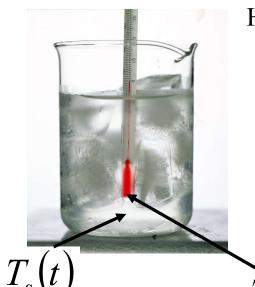

- If A and C are in thermal equilibrium with B, then A is in thermal equilibrium with C.
 Maxwell [1872]
- Practically this means that all three are at the same temperature.
- A basis for comparison of effect of temperatures.



DEMONSTRATION OF ZEROTH LAW

If the substance that composes the system is in thermal equilibrium, the temperature will be the same throughout the entire system, and we may speak of the temperature as a property of the system

turn have equality of temperature with each other.


III SEM- APPLIED THERMODTNAMICS-UNIT I ZEROTH LAW OF THYERMODYNAMICS/DR.R.SUDHAKARAN

HOW LONG IT TAKES TO ACHIVE ZEROTH LAW?

Conservation of Energy during a time dt

Heat in = Change in energy of thermocouple

$$UA_b(T_s - T_{th})dt = \rho V_{th}C_{th}dT_{th}$$

$$\rho V_{th} C_{th} \frac{dT_{th}}{dt} = U A_b (T_s - T_{th})$$

 $T_{th}(t)$

 $T_s(t)$ = Instantaneous Temperature of the System

 $T_{th}(t)$ = Instantane ous Temperature anofics thermodecy resoluble karan

$$\rho V_{th} C_{th} \frac{dT_{th}}{dt} + U A_b T_{th} = U A_b T_s \qquad \frac{\rho V_{th} C_{th}}{U A_b} \frac{dT_{th}}{dt} + T_{th} = T_s$$

Define Time constant $\tau = \frac{\rho_{th} V_{th} C_{th}}{U A_{b}}$

$$\tau \frac{dT_{th}}{dt} + T_{th} = T_s \qquad \tau_S T_{th}(s) + T_{th}(s) = \frac{T_s}{s}$$

$$(\tau_S + 1)T_{th}(s) = \frac{T_s}{s}$$
 $T_{th}(s) = \frac{T_s}{s(\tau_S + 1)}$

III SEM- APPLIED THERMODTNAMICS-UNIT I ZEROTH LAW OF THYERMODYNAMICS/DR.R.SUDHAKARAN