

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore - 641 107

#### **An Autonomous Institution**

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

## **DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING**

#### COURSE NAME : 19CS732 INFORMATION RETRIEVAL TECHNIQUES

IVYEAR / VIII SEMESTER

### **Unit 2- MODELING AND RETRIEVAL EVALUATION**

Topic 8 : Precision and Recall and Reference Collection





## Problem



- ≻Makes experimental work hard
  - ➢Especially on a large scale
- ➢In some very specific settings, can use proxies
  - >E.g.: for approximate vector space retrieval, we can compare the cosine distance closeness of the closest docs to those found by an approximate retrieval algorithm
- ➢But once we have test collections, we can reuse them (so long as we don't overtrain too badly)



#### **Precision and Recall**



#### **Precision**:

fraction of retrieved docs that are relevant = P(relevant|retrieved)

#### **Recall**:

fraction of relevant docs that are retrieved = P(retrieved|relevant)

|               | Relevant | Nonrelevant |
|---------------|----------|-------------|
| Retrieved     | tp       | fp          |
| Not Retrieved | fn       | tn          |



# Should we instead use the accuracy measure for evaluation?



≻Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"

> The **accuracy** of an engine: the fraction of these classifications that are correct

(tp + tn) / (tp + fp + fn + tn)

**Accuracy** is a commonly used evaluation measure in machine learning classification work

➤Why is this not a very useful evaluation measure in IR?



#### **Difficulties in using Precision/Recall**



- ➤Should average over large document collection/query ensembles
- Need human relevance assessments
  - People aren't reliable assessors
- ➤Assessments have to be binary
  - ≻Nuanced assessments?
- Heavily skewed by collection/authorship
  - ➢ Results may not translate from one domain to another





## Precision/Recall -Cont..

Combined measure that assesses precision/recall tradeoff is **F measure** 

(weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

People usually use balanced  $F_1$  measure

i.e., with  $\beta$  = 1 or  $\alpha$  =  $\frac{1}{2}$ 

Harmonic mean is a conservative average

See CJ van Rijsbergen, Information Retrieval

9/1/2024



## Kappa measure for inter-judge (dis)agreement

#### Kappa measure

Agreement measure among judges

Designed for categorical judgments

Corrects for chance agreement

Kappa = [P(A) - P(E)] / [1 - P(E)]

P(A) – proportion of time judges agree

P(E) – what agreement would be by chance

Kappa = 0 for chance agreement, 1 for total agreement.





# Kappa Measure: Example



| Number of docs | Judge 1     | Judge 2     |
|----------------|-------------|-------------|
| 300            | Relevant    | Relevant    |
| 70             | Nonrelevant | Nonrelevant |
| 20             | Relevant    | Nonrelevant |
| 10             | Nonrelevant | Relevant    |

Unit-2/Modeling and Retrieval <mark>Evaluation /19CS732 Information Retrieval Techniques</mark> /M<mark>r.K.Karthikeyan/CSE/SNSCE</mark>



## Kappa Example



P(A) = 370/400 = 0.925

P(nonrelevant) = (10+20+70+70)/800 = 0.2125

P(relevant) = (10+20+300+300)/800 = 0.7878

 $P(E) = 0.2125^2 + 0.7878^2 = 0.665$ 

Kappa = (0.925 - 0.665)/(1-0.665) = 0.776

Kappa > 0.8 = good agreement

0.67 < Kappa < 0.8 -> "tentative conclusions" (Carletta '96)

Depends on purpose of study

For >2 judges: average pairwise kappas





# Activity

9/1/2024

Unit-2/Modeling and Retrieva<mark>l Evaluation /19CS732 Information Retrieval Techniques</mark> /<mark>Mr.K.Karthikeyan/CSE/SNSCE</mark>

10/14



# Disadvantages



> A document can be redundant even if it is highly relevant

➢Duplicates

➤The same information from different sources

≻Marginal relevance is a better measure of utility for the user.

≻Using facts/entities as evaluation units more directly measures true relevance.

But harder to create evaluation set



# Advantages



▶Impact on absolute performance measure can be significant (0.32 vs 0.39)

Little impact on ranking of different systems or relative performance

Suppose we want to know if algorithm A is better than algorithm B

➤A standard information retrieval experiment will give us a reliable answer to this question.



# **Assessment 1**



Assessment

1. List out the Advantages of Precision and Recall and Reference Collection



2. Identify the disadvantages of Precision and Recall and Collection





## TEXT BOOKS:



1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.

2. Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook||, First Edition, 2011.

#### **REFERENCES:**

1. C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2008.

2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

# THANK YOU