

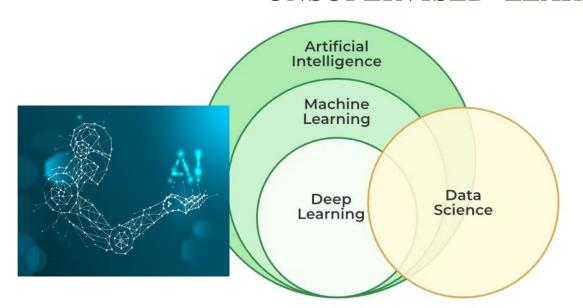
SNS College of Engineering

An Autonomous Institution

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

Redesigning Common Mind & Business Towards Excellence

Approved by AICTE, Recognized by UGC and Affiliated to Anna University, Chennai


Accredited by NAAC-UGC with 'A' Grade.

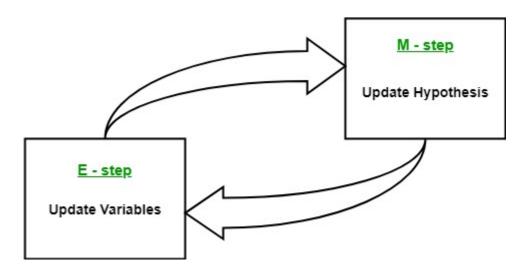
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

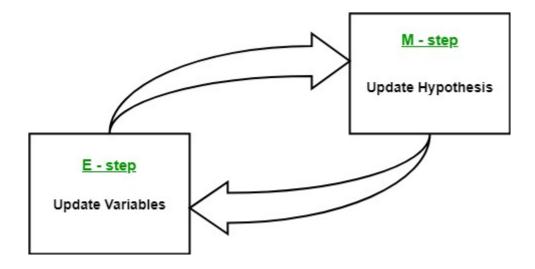
UNIT - 3

UNSUPERVISED LEARNING

Prepared by Dr.M.Sudha

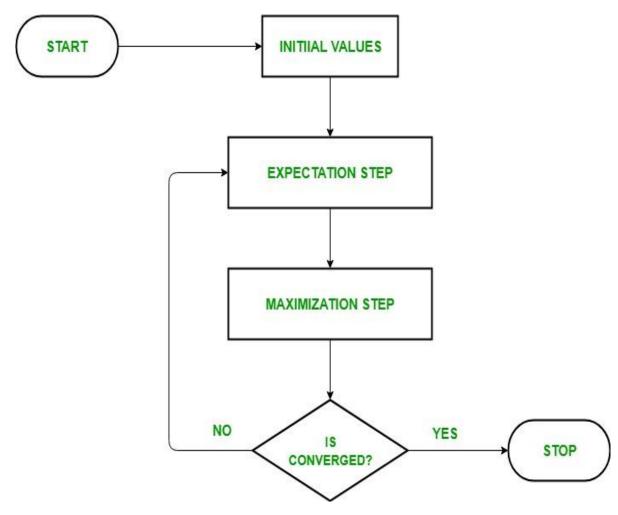

Associate Professor, ECE **SNSCE**

EM Algorithm


- In the E step, the algorithm computes the latent variables i.e. expectation of the log-likelihood using the current parameter estimates.
- In the **M step**, the algorithm determines the parameters that maximize the **expected log-likelihood** obtained in the E step, and corresponding model parameters are updated based on the estimated latent variables.

EM Algorithm

- By iteratively repeating these steps, the EM algorithm seeks to maximize the likelihood of the observed data.
- It is commonly used for unsupervised learning tasks, such as **clustering**, where **latent variables are inferred** and has applications in various fields, including machine learning, computer vision, and natural language processing.


EM Algorithm

- •Latent Variables: Latent variables are unobserved variables in statistical models and cannot be directly measured but can be detected by their impact on the observable variables.
- •Log-Likelihood: It is the logarithm of the likelihood function, which measures the goodness of fit between the observed data and the model.
- •Convergence: Convergence refers to the condition when the EM algorithm has reached a stable solution.

How EM Algorithm Works

Applications of EM Algorithm

- It can be used to fill in the missing data in a sample.
- It can be used as the basis of unsupervised learning of clusters.
- It can be used for the purpose of estimating the parameters of the Hidden Markov Model (HMM).
- It can be used for discovering the values of latent variables.

sign Thinking FrameWork

