

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PIC16F877Architecture

Dr.G.Arthy
Assistant Professor
Department of EEE
SNS College of Engineering

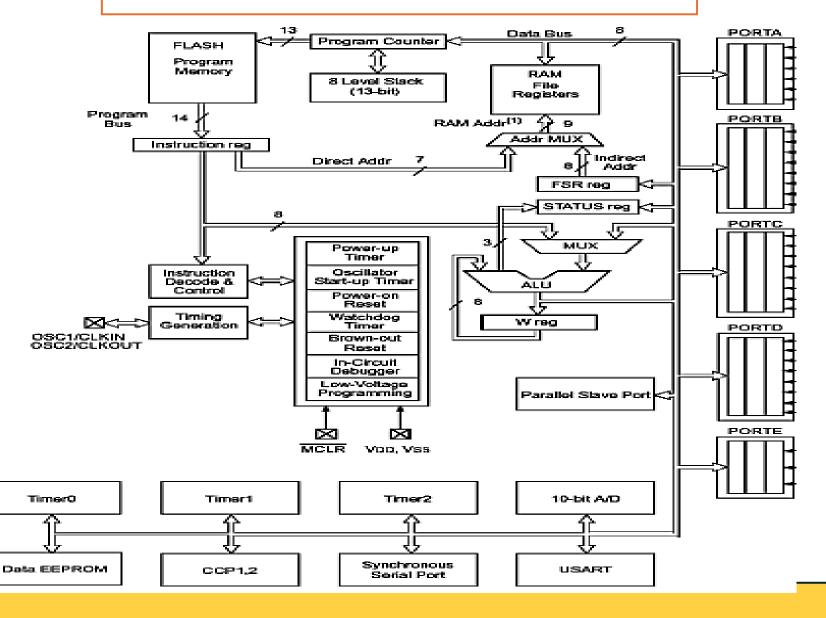
Features of PIC 16F877

The PIC microcontroller was introduced by **Microchip Technologies** in the year 1993. Hence the PIC gets its name as for **Peripheral Interface Controller.**

High-Performance RISC CPU:

- Only 35 single-word instructions to learn
- All single-cycle instructions except for program branches, which are two-cycle
- Operating speed: DC 20 MHz clock input DC 200 ns instruction cycle
- Up to 8K x 14 words of Flash Program Memory, Up to 368 x 8 bytes of Data Memory (RAM), Up to 256 x 8 bytes of EEPROM Data Memory

Difference between RISC and CISC Processor



S.N o.	RISC	cisc
1.	RISC is a reduced instruction set.	CISC is a complex instruction set.
2.	The number of instructions is less as compared to CISC.	The number of instructions is more as compared to RISC.
3.	The addressing modes are less.	The addressing modes are more.
4.	It works in a fixed instruction format.	It works in a variable instruction format.
5.	The RISC consumes low power.	The CISC consumes high power.
6.	The RISC processors are highly pipelined.	The CISC processors are less pipelined.
7.	It optimizes the performance by focusing on software.	It optimizes the performance by focusing on hardware.
8.	Requires more RAM.	Requires less RAM.

Architecture

OSCILLATOR TYPES

The PIC16F87XA can be operated in four different oscillator modes.

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

CPU (Central Processing Unit)

PIC microcontroller's CPU consists of

- . Arithmetic logic unit (ALU)
- . Memory unit (MU)
- . Control unit (CU)
- . Accumulator

MEMORY

The memory of a PIC 16F877 chip is divided into 3 sections:

- ✓ Program memory
- ✓ Data memory and
- ✓ Data EEPROM

REGISTERS

GENERAL PURPOSE REGISTERS (GPR):

- ✓ Don't have any special function.
- ✓ Used for general purpose for multiplying, addition or subtraction and then storing the results in other registers.
- ✓ CPU can easily access the data in these registers.

SPECIAL FUNCTION REGISTERS (SFR):

- ✓ Used for special purposes and they cannot be used as normal registers.
- ✓ Their function is set at the time of manufacturing.
- ✓ They perform the function assigned to them and user cannot change the function of SFR.

SFR

Three important SFRs for programming are:

STATUS register: It changes the bank

STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

R/W-0	R/W-0	RM-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7	an Aunio				,		bit

PORT registers: It assigns logic values 0 or 1 to the ports

TRIS registers: It is a data direction register for input and output

INTERRUPTS

INTERRUPTS

There are 20 internal interrupts and three external interrupt sources in PIC microcontrollers which are related with different peripherals like ADC, USART, Timers, and CCP etc.,

SERIAL COMMUNICATION

The transfer of one bit of data at time consecutively over a communication channel is called Serial Communication. There are three protocols of serial communication:

- USART
- SPI Protocol
- I2C Protocol

I/O PORTS:

it consists of five ports, such as Port A, Port B, Port C, Port D and Port E. with TRISA, TRISB, TRISC, TRISD, TRISE as the direction register.

CCP MODULE:

A CCP module works in the following three modes:

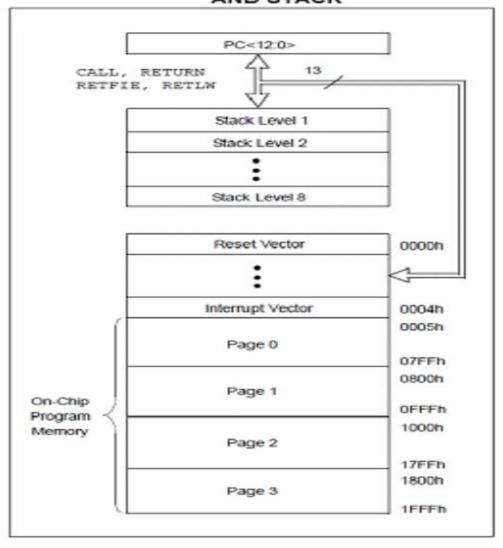
- Capture Mode
- Compare Mode
- PWM Mode

TIMERS:

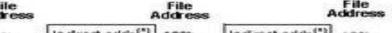
Timers and counters are important as timers can tell the time and count. PIC microcontroller can have up to four timers (depending upon the family) Timer0, Timer1, Timer2 and Timer3. Timer0 and Timer2 are of 8-bits while the Timer1 and Timer3 are of 16-bits, which can also be used as a counter. These timers work according to the selected modes.

D/A CONVERTER:

There are no <u>analog outputs in PIC Microcontroller</u>. To get analog output we have to use external Digital-to-Analog Converter (DAC). It can convert 8 bits of digital number from the eight digital outputs of PIC microcontroller.


PROGRAM MEMORY

- ✓ Program memory contains the programs that are written by the user.
- ✓ The program counter (PC) executes these stored commands one by one.
- ✓ Usually PIC16F877 devices have a 13 bit wide program counter that is capable of addressing 8K×14 bit program memory space.
- ✓ This memory is primarily used for storing the programs that are written (burned) to be used by the PIC.
- ✓ These devices also have 8K*14 bits of flash memory that can be electrically erasable /reprogrammed.



DATA MEMORY

- ✓ The data memory of PIC16F877 is separated into multiple banks which contain the general-purpose registers (GPR) and special function registers (SPR).
- ✓ According to the type of the microcontroller, these banks may vary.
- ✓ The PIC16F877 chip only has four banks (BANK 0, BANK 1, BANK 2, and BANK4).
- ✓ Each bank holds 128 bytes of addressable memory.

DATA MEMORY

	ddress		Address		Address	£	Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	1806
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	1829
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	1838
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	0 0000	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD(1)	08h	TRISD(1)	88h		108h		1888
PORTE(1)	09h	TRISE ⁽¹⁾	89h		109h	Marian S	189P
PCLATH	0.40	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18.4
INTCON	0Bh	INTCON	8Bh	INTCON	108h	INTCON	18Bt
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18CF
PIR2	0Dh	PIE2	8Dh	EEADR	100h	EECON2	18Df
TMR1L	0Eh	PCON	8Eh	EEDATH	10€h	Reserved ⁽²⁾	18EH
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18FF
TICON	10h		90h		110h		1908
TMR2	11h	SSPCON2	91h	1	111h		1918
T2CON	12h	PR2	92h		112h		1929
SSPBUF	13h	SSPADD	93h	1	113h		1938
SSPCON	14h	SSPSTAT	94h	1	114h		1948
CCPR1L	15h		95h	1	115h		1958
CCPR1H	16h	37	96h	2022330333	116h	190000000	1968
CCP1CON	17h	8	97h	General Purpose	117h	General Purpose	1978
RCSTA	18h	TXSTA	98h	Register	118h	Register	1988
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	1998
RCREG	1.Ah		9Ah		11Ah		19.0
CCPR2L	18h	Market 1	98h	1	118h		1986
CCPR2H	1Ch	CMCON	9Ch		11Ch		190
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19DI
ADRESH	1Eh	ADRESL	9E h		11Eh		19E
ADCON0	1Fh	ADCON1	9Fh		11Fh		19FF
	20h	General Purpose	AOh	General Purpose	120h	General Purpose	1.A08
General Purpose Register		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes	
96 Bytes	7Fh	accesses 70h-7Fh	EFh FOh FFh	accesses 70h-7Fh	16Fh 170h	accesses 70h - 7Fh	1EF

