

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PIC16F877-Timers/Counters

Dr.G.Arthy Assistant Professor Department of EEE SNS College of Engineering

PIC16F877 Timers/Dr.G.Arthy/EEE/SNSCE

TIMERS

- Used to **measure** the time or generate an accurate time delay.
- Timer is a simple binary counter that can be configured to count clock pulses (Internal/External).
- Once it reaches the max value, it will roll back to zero, setting up an **OverFlow** flag and generates the interrupt if enabled.

CAN'T A MICROCONTROLLER DO THIS?

PIC16F877 Timers/Dr.G.Arthy/EEE/SNSCE

WHY TIMER IS REQUIRED?

- The microcontroller can also generate/measure the required time delays by running loops.
- But the timer relieves the CPU from that redundant and repetitive task, allowing it to allocate maximum processing time for other tasks.

TYPES OF TIMERS

PIC16F877a has three timers.

- Timer0 (8-bit timer)
- Timer1 (16-bit timer) \rightarrow Good resolution
- Timer2 (8-bit timer)

All Timers can act as a timer or counter or PWM Generation.

- **Prescaler** is a block that presents inside the timer module and it is used to divide the clock frequency by a constant.
- It allows the timer to be clocked at the rate a user desires.

TIMER INTERRUPT

 As the timer increments and when it reaches its maximum value of 255 (for 8-bit timers) or 65536 (for 16-bit timers), it will trigger an interrupt and initialize itself to 0 back again. This interrupt is called as the Timer Interrupt.

FOSC

• The **FOSC stands for Frequency of the Oscillator**, it is the frequency of the Crystal used. The time taken for the Timer register depends on the value of Prescaler and the value of the FOSC.

TIMER 0

The main features of Timer 0 is given below:

- 8-bit timer/counter with prescaler
- Readable and Writable
- Internal or external Clock set
- Build 8-bit software programmable prescaler
- Edge select for external clock
- Interrupt on overflow from 0XFF to 0X00

REGISTERS IN TIMER 0

✓ OPTION_REG

$\checkmark TMR0$

✓ INTCON

PIC16F877 Timers/Dr.G.Arthy/EEE/SNSCE

OPTION_REG

OPTION_REG REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

9/2/2024

OPTION_REG REGISTER

3	R/W-	-1	R/W-1	R/W-1	R/W-1	R/W	-1	R/W-1	R/W-1	R/W-1	\geq		
	RBP	U	INTEDG	TOCS	TOSE	PS	A	PS2	PS1	PS0			
	bit 7				1					bit 0			
R	BPU	PORTB Pull-up			1 = PORTB pull-ups are disabled								
		Enable bit		0 = PORTB pull-ups are enabled by individual port latch values									
IN	ITEDG												
Т	0CS	TMR0 Clock Source Select bit		1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO)									
Τ	OSE	TMR0 Source Edge Select bit		1 = Increment on high-to-low transition on TOCKI pin0 = Increment on low-to-high transition on TOCKI pin					KI pin KI pin				
P	SA	Pre	scaler		1 = Pres	scaler is	assig	ned to th	ie WDT				
		Assignment bit			0 = Pres	scaler is	assig	ned to th	ne Timer0) module			
P	S2:PS0	Prescaler Rate Select bits		Bit Value Tr 000 001 010 011 100 101	MR0 Rate WI 1:2 1:4 1:8 1:16 1:32 1:64 1:120	DT Rate 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64							

OF DE ENA			INT	CON	Regi	ster				
	INTCON F	REGISTER								
S S	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
COMMEATORE 101	GIE	TMROIE	INTE	RBIE	TMR0IF	INTF	RBIF	MSTITUTIONS		
	bit 7							bit 0		
	R = Readable '1' = Bit is set	bit W = Writ '0' = Bit	table bit is cleared	U = Unimple x = Bit is un	mented bit, rea known	idias '0' - n =	Value at POR			
GIE	Global Interru		1-Enable 0-Disabl	1-Enables all unmasked interrupts 0-Disables all interrupts						
PIE	Peripheral Interrupt Enable bit				1-Enable 0-Disabl	1-Enables all unmasked peripheral interrupts 0-Disables all peripheral interrupts				
TMROIE	TMR0 Overflow Interrupt Enable bit				1-Enable 0-Disabl	1-Enables the TMR0 interrupt 0-Disables the TMR0 interrupt				
INTE	(RB0/INT External Interrupt Enable Bit) Not for Timers									
RBIE	(RB Port Change Interrupt Enable Bit) Not for Timers				1 = Prese 0 = Prese	1 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the Timer0 module				
TMROIF	TMR0 Overflo	1-TMR0 register has overflowed (must be cleared in software) 0-TMR0 register did not overflow				ed in software)				
INTF & RBIF	(RB0/INT Ext (RB Port Char	Not for T	limers							

TMR0 Register

- This is the 8-bit register that holds the timer values.
- For example,
 - Initially, it will be 0. It will increment by one per one clock cycle.
 When it reaches 255, it will trigger the TMR0IF bit in INTCON Register. Then again starts from 0.

Delay Calculation for 1 second

Here, My fclk = 11.0592MHz (You can put your board's fclk) Prescaler = 256 (It is based on PS0 – PS2 bits in OPTION_REG) TMR0 = 0. (My TMR0's value will be 0) Desire Delay (Tout = 1 second) So Fout = 1 (Tout = 1/Fout) Apply these values to the above formula. Count = 11059200 / (4*256*256*1) Count = 42.1875 (approximately 42).

Timer0 Code

In this code, a LED is connected to Port B. Those LEDs are blinking every 1 second.

1.	#include <pic.h></pic.h>
	<pre>void t0delay();</pre>
	void main()
	{
	TRISB=0;
	OPTION_REG=0x07; //Prescale is assigned to Timer 0, Prescaler value = 256, Fcl
	while(1) {
	PORTB=0xff;
	tOdelay();
	$PORTB=0 \times 00;$
	tOdelay();
	}
	}
	void tOdelay() // 1 second
	{
	int i;
	for(i=0;i<42;i++) {
	while(!TOIF);
22.	TOIF=0;
	}
24.	}

Timer 1

The timer TMR1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter with two 8-Bit registers TMR1H/TMR1L
- Readable and writable
- software programmable Prescaler up to 1:8
- Internal or external clock select
- Interrupt on overflow from FFFFh to 00h
- Edge select for external clock

Registers used for Timer1

- T1CON
- TMR1 (TMRIH, TMRIL)
- PIR1

T1CON: TIMER1 CONTROL REGISTER

T1CKPS1:T1CKPS0:Timer1 Input Clock Prescale Select bits T1OSCEN: Timer1 Oscillator Enable Control bit T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS: Timer1 Clock Source Select bit TMR1ON: Timer1 On bit

TMR1 Register

- Timer1 has a register called the TMR1 register, which is 16 bits in size. Actually, the TMR1 consists of two 8-bits registers:
- TMR1H
- TMR1L

PIR1 Register

 This flag marks the end of ONE cycle count. The flag needs to be reset in the software if you want to do another cycle count.

Timer1 Code

- In this code, a LED is connected to Port B.
- Those LEDs are blinking every 1 second.

1.	#include <pic.h></pic.h>
2.	
	<pre>void t1delay();</pre>
5.	void main()
	{
	TRISB=0;
	T1CON=0x01; //Prescale value = 1:1, It using Internal clock, Timer 1 ON
	while(1) {
10.	PORTB=0xff;
	tldelay();
	PORTB=0;
	tldelay();
	}
15.	}
	void tldelay()
	{
	int i;
20.	for(i=0;i<42;i++) {
	TMR1H=TMR1L=0;
22.	<pre>while(!TMR1IF);</pre>
	TMR1IF=0;
25.	

Timer 2

The TImer2 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter
- Readable and writable
- Software programmable Prescaler/PostScaler up to 1:16
- Interrupt on overflow from FFh to 00h

Registers used for Timer2

- T2CONTMR2PIR2
- •PR2

PIC16F877 Timers/Dr.G.Arthy/EEE/SNSCE

T2CON Register

T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7			•				bit 0
R = Readable '1' = Bit is set	bit W = Wri '0' = Bit	table bit is cleared	U = Unimple x = Bit is un	emented bit, rea Iknown	d as '0' - n =	Value at POR	

TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits

TMR2ON: Timer2 On bit

T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

TMR2 & PR2 Register

- **TMR2** The register in which the "initial" count value is written.
- **PR2** The register in which the final or the maximum count value is written.

Delay Calculation for 1 second

Here, My fclk = 11.0592MHz (You can put your board's fclk)

Prescaler = 1 (It is based on T2CKPS1:T2CKPS0 bits in T2CON)

Postscaler = 16 (It is based on TOUTPS3:TOUTPS0 bits in T2CON)

TMR2 = 0. (My TMR2's value will be 0)

PR2 = 255 (My PR2's value will be 255)

Desire Delay (Tout = 1 second) So Fout = 1 (Tout = 1/Fout)

Apply these values to the above formula.

```
Count = 11059200 / (4*1*(256-0)*16*1)
```

Count = 675.

Timer2 Code

	<pre>void t2delay();</pre>	
	void main()	
	ł	
	TRISB=0;	
	T2CON =0b01111000;	//postscale=16,prescale=1,timer off
	while(1)	
	{	
	PORTB=255;	
	t2delay();	
	PORTB=0;	
	t2delay();	
16.	}	
	}	
	void t2delay()	
	{	
	unsigned int i;	
22.	T2CON =(1<<2);	
23.	<pre>for(i=0;i<675;i++)</pre>	
	{	
25.	<pre>while(!TMR2IF);</pre>	
26.	TMR2IF=0;	
	}	
28.	}	

Assessment

1. Mention the registers in Timer 2.

2. List the registers in Timer 0.