
UNIT I: Introduction

Subtopic 2: Basic Syntax and Data Types

Understanding the Python Syntax and Structure

2.1 Python Syntax Basics:

Python's syntax is designed to be readable and straightforward. Here are some key points:

1. Comments: Use the # symbol to add comments.

 # This is a comment
print("Hello, World!") # This prints a message

2. Indentation: Python uses indentation to define blocks of code. Each indentation
level is typically four spaces.

 if True:
 print("This is indented")
 if False:
 print("This won't print")

3. Variables: Variables do not need explicit declaration and can be assigned any value.

 x = 5
y = "Hello"
z = 3.14

Data Types in Python

Python has several built-in data types. Here are the most common ones:

2.2 Integers (int):

• Whole numbers, positive or negative, without decimals. python a = 10 b = -5

Example:

a = 10
b = -5
print(type(a)) # Output: <class 'int'>
print(a + b) # Output: 5

Example for Integers
a = 10
b = -5
print(type(a)) # Output: <class 'int'>

print(a + b) # Output: 5

2.3 Floats (float):

• Numbers with decimals. python c = 3.14 d = -0.001

Example:

c = 3.14
d = -0.001
print(type(c)) # Output: <class 'float'>
print(c + d) # Output: 3.139

Example for Floats
c = 3.14
d = -0.001
print(type(c)) # Output: <class 'float'>
print(c + d) # Output: 3.139

2.4 Strings (str):

• A sequence of characters enclosed in quotes, either single (') or double ("). python e
= "Hello" f = 'World'

Example:

e = "Hello"
f = 'World'
print(type(e)) # Output: <class 'str'>
print(e + " " + f) # Output: Hello World

Example for Strings
e = "Hello"
f = 'World'
print(type(e)) # Output: <class 'str'>
print(e + " " + f) # Output: Hello World

2.5 Booleans (bool):

• Represents True or False values. python g = True h = False

Example:

g = True
h = False

print(type(g)) # Output: <class 'bool'>
print(g and h) # Output: False
print(g or h) # Output: True

Example for Booleans
g = True
h = False
print(type(g)) # Output: <class 'bool'>
print(g and h) # Output: False
print(g or h) # Output: True

Working with Different Data Types

2.6 Type Conversion:

• You can convert between data types using functions like int(), float(), str(), and
bool(). python i = "123" j = int(i) k = float(i)

Example:

i = "123"
j = int(i)
k = float(i)
print(type(j)) # Output: <class 'int'>
print(type(k)) # Output: <class 'float'>
print(j, k) # Output: 123 123.0

Example for Type Conversion
i = "123"
j = int(i)
k = float(i)
print(type(j)) # Output: <class 'int'>
print(type(k)) # Output: <class 'float'>
print(j, k) # Output: 123 123.0

2.7 Combining Different Data Types:

• Use appropriate operations and functions to combine and manipulate different data
types. python l = 5 m = " apples" n = str(l) + m

Example:

l = 5
m = " apples"
n = str(l) + m
print(n) # Output: 5 apples

Example for Combining Different Data Types
l = 5
m = " apples"
n = str(l) + m
print(n) # Output: 5 apples

Summary

Understanding Python's basic syntax and data types is essential for writing effective programs.
Python's simplicity in syntax and its flexibility in handling different data types make it a powerful
tool for beginners and experienced programmers alike. By mastering these fundamentals, you
will be well-equipped to tackle more complex programming tasks and applications in
engineering.

	UNIT I: Introduction
	Subtopic 2: Basic Syntax and Data Types

	Summary

