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Data can be corrupted 

during transmission.

Some applications require that 

errors be detected and corrected.

Note
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10-1   INTRODUCTION

Let us first discuss some issues related, directly or

indirectly, to error detection and correction.

Types of Errors

Redundancy

Detection Versus Correction

Forward Error Correction Versus Retransmission

Coding

Modular Arithmetic

Topics discussed in this section:
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In a single-bit error, only 1 bit in the data 

unit has changed.

Note
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Figure 10.1  Single-bit error
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A burst error means that 2 or more bits 

in the data unit have changed.

Note
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Figure 10.2  Burst error of length 8
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To detect or correct errors, we need to 

send extra (redundant) bits with data.

Note
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Figure 10.3  The structure of encoder and decoder
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In this book, we concentrate on block 

codes; we leave convolution codes 

to advanced texts.

Note
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In modulo-N arithmetic, we use only the 

integers in the range 0 to N −1, inclusive.

Note
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Figure 10.4  XORing of two single bits or two words
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10-2   BLOCK CODING

In block coding, we divide our message into blocks,

each of k bits, called datawords. We add r redundant

bits to each block to make the length n = k + r. The

resulting n-bit blocks are called codewords.

Error Detection

Error Correction

Hamming Distance

Minimum Hamming Distance

Topics discussed in this section:
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Figure 10.5  Datawords and codewords in block coding
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The 4B/5B block coding discussed in Chapter 4 is a good

example of this type of coding. In this coding scheme,

k = 4 and n = 5. As we saw, we have 2k = 16 datawords

and 2n = 32 codewords. We saw that 16 out of 32

codewords are used for message transfer and the rest are

either used for other purposes or unused.

Example 10.1
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Figure 10.6  Process of error detection in block coding
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Let us assume that k = 2 and n = 3. Table 10.1 shows the

list of datawords and codewords. Later, we will see

how to derive a codeword from a dataword.

Assume the sender encodes the dataword 01 as 011 and

sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It is a valid codeword. The

receiver extracts the dataword 01 from it.

Example 10.2
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2. The codeword is corrupted during transmission, and

111 is received. This is not a valid codeword and is

discarded.

3. The codeword is corrupted during transmission, and

000 is received. This is a valid codeword. The receiver

incorrectly extracts the dataword 00. Two corrupted

bits have made the error undetectable.

Example 10.2 (continued)
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Table 10.1  A code for error detection (Example 10.2)
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An error-detecting code can detect 

only the types of errors for which it is 

designed; other types of errors may 

remain undetected.

Note
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Figure 10.7  Structure of encoder and decoder in error correction
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Let us add more redundant bits to Example 10.2 to see if

the receiver can correct an error without knowing what

was actually sent. We add 3 redundant bits to the 2-bit

dataword to make 5-bit codewords. Table 10.2 shows the

datawords and codewords. Assume the dataword is 01.

The sender creates the codeword 01011. The codeword is

corrupted during transmission, and 01001 is received.

First, the receiver finds that the received codeword is not

in the table. This means an error has occurred. The

receiver, assuming that there is only 1 bit corrupted, uses

the following strategy to guess the correct dataword.

Example 10.3
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1. Comparing the received codeword with the first

codeword in the table (01001 versus 00000), the

receiver decides that the first codeword is not the one

that was sent because there are two different bits.

2. By the same reasoning, the original codeword cannot

be the third or fourth one in the table.

3. The original codeword must be the second one in the

table because this is the only one that differs from the

received codeword by 1 bit. The receiver replaces

01001 with 01011 and consults the table to find the

dataword 01.

Example 10.3 (continued)
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Table 10.2  A code for error correction (Example 10.3)
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The Hamming distance between two 

words is the number of differences 

between corresponding bits.

Note
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Let us find the Hamming distance between two pairs of

words.

1. The Hamming distance d(000, 011) is 2 because

Example 10.4

2. The Hamming distance d(10101, 11110) is 3 because
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The minimum Hamming distance is the 

smallest Hamming distance between

all possible pairs in a set of words.

Note
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Find the minimum Hamming distance of the coding

scheme in Table 10.1.

Solution

We first find all Hamming distances.

Example 10.5

The dmin in this case is 2.



Mr.K.K.RAJKUMAR/Communication Networks/19EC501
10.28

Find the minimum Hamming distance of the coding

scheme in Table 10.2.

Solution

We first find all the Hamming distances.

The dmin in this case is 3.

Example 10.6
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To guarantee the detection of up to s 

errors in all cases, the minimum

Hamming distance in a block 

code must be dmin = s + 1.

Note
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The minimum Hamming distance for our first code

scheme (Table 10.1) is 2. This code guarantees detection

of only a single error. For example, if the third codeword

(101) is sent and one error occurs, the received codeword

does not match any valid codeword. If two errors occur,

however, the received codeword may match a valid

codeword and the errors are not detected.

Example 10.7
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Our second block code scheme (Table 10.2) has dmin = 3.

This code can detect up to two errors. Again, we see that

when any of the valid codewords is sent, two errors create

a codeword which is not in the table of valid codewords.

The receiver cannot be fooled.

However, some combinations of three errors change a

valid codeword to another valid codeword. The receiver

accepts the received codeword and the errors are

undetected.

Example 10.8



Mr.K.K.RAJKUMAR/Communication Networks/19EC501
10.32

Figure 10.8  Geometric concept for finding dmin in error detection
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Figure 10.9  Geometric concept for finding dmin in error correction
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To guarantee correction of up to t errors 

in all cases, the minimum Hamming 

distance in a block code 

must be dmin = 2t + 1.

Note
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A code scheme has a Hamming distance dmin = 4. What is

the error detection and correction capability of this

scheme?

Solution

This code guarantees the detection of up to three errors

(s = 3), but it can correct up to one error. In other words,

if this code is used for error correction, part of its capability

is wasted. Error correction codes need to have an odd

minimum distance (3, 5, 7, . . . ).

Example 10.9
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10-3   LINEAR BLOCK CODES

Almost all block codes used today belong to a subset

called linear block codes. A linear block code is a code

in which the exclusive OR (addition modulo-2) of two

valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes

Some Linear Block Codes

Topics discussed in this section:
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In a linear block code, the exclusive OR 

(XOR) of any two valid codewords 

creates another valid codeword.

Note
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Let us see if the two codes we defined in Table 10.1 and

Table 10.2 belong to the class of linear block codes.

1. The scheme in Table 10.1 is a linear block code

because the result of XORing any codeword with any

other codeword is a valid codeword. For example, the

XORing of the second and third codewords creates the

fourth one.

2. The scheme in Table 10.2 is also a linear block code.

We can create all four codewords by XORing two

other codewords.

Example 10.10
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In our first code (Table 10.1), the numbers of 1s in the

nonzero codewords are 2, 2, and 2. So the minimum

Hamming distance is dmin = 2. In our second code (Table

10.2), the numbers of 1s in the nonzero codewords are 3,

3, and 4. So in this code we have dmin = 3.

Example 10.11
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A simple parity-check code is a 

single-bit error-detecting 

code in which 

n = k + 1 with dmin = 2.

Note
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Table 10.3  Simple parity-check code C(5, 4)
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Figure 10.10  Encoder and decoder for simple parity-check code
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Let us look at some transmission scenarios. Assume the

sender sends the dataword 1011. The codeword created

from this dataword is 10111, which is sent to the receiver.

We examine five cases:

1. No error occurs; the received codeword is 10111. The

syndrome is 0. The dataword 1011 is created.

2. One single-bit error changes a1 . The received

codeword is 10011. The syndrome is 1. No dataword

is created.

3. One single-bit error changes r0 . The received codeword

is 10110. The syndrome is 1. No dataword is created. 

Example 10.12
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4. An error changes r0 and a second error changes a3 .

The received codeword is 00110. The syndrome is 0.

The dataword 0011 is created at the receiver. Note that

here the dataword is  wrongly created due to the

syndrome value. 

5. Three bits—a3, a2, and a1—are changed by errors.

The received codeword is 01011. The syndrome is 1.

The dataword is not created. This shows that the simple

parity check, guaranteed to detect one single error, can

also find any odd number of errors.

Example 10.12  (continued)
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A simple parity-check code can detect 

an odd number of errors.

Note
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All Hamming codes discussed in this 

book have dmin = 3.

The relationship between m and n in 

these codes is n = 2m − 1.

Note
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Figure 10.11  Two-dimensional parity-check code
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Figure 10.11  Two-dimensional parity-check code
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Figure 10.11  Two-dimensional parity-check code



Mr.K.K.RAJKUMAR/Communication Networks/19EC501
10.50

Table 10.4  Hamming code C(7, 4)
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Figure 10.12  The structure of the encoder and decoder for a Hamming code
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Table 10.5  Logical decision made by the correction logic analyzer
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Let us trace the path of three datawords from the sender 

to the destination:

1. The dataword 0100 becomes the codeword 0100011.

The codeword 0100011 is received. The syndrome is

000, the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001.

The syndrome is 011. After  flipping b2 (changing the 1

to 0), the final dataword is 0111.

3. The dataword 1101 becomes the codeword 1101000.

The syndrome is 101. After flipping b0, we get 0000,

the wrong dataword. This shows that our code cannot

correct two errors.

Example 10.13
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We need a dataword of at least 7 bits. Calculate values of

k and n that satisfy this requirement.

Solution

We need to make k = n − m greater than or equal to 7, or  

2m − 1 − m ≥ 7.

1. If we set m = 3, the result is n = 23 − 1 and k = 7 − 3,

or 4, which is not acceptable.

2. If we set m = 4, then n = 24 − 1 = 15 and k = 15 − 4 =

11, which satisfies the condition. So the code is

Example 10.14

C(15, 11) 
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Figure 10.13  Burst error correction using Hamming code
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10-4   CYCLIC CODES

Cyclic codes are special linear block codes with one

extra property. In a cyclic code, if a codeword is

cyclically shifted (rotated), the result is another

codeword.

Cyclic Redundancy Check

Hardware Implementation

Polynomials

Cyclic Code Analysis

Advantages of Cyclic Codes

Other Cyclic Codes

Topics discussed in this section:
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Table 10.6  A CRC code with C(7, 4)



Mr.K.K.RAJKUMAR/Communication Networks/19EC501
10.58

Figure 10.14  CRC encoder and decoder
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Figure 10.15  Division in CRC encoder



Mr.K.K.RAJKUMAR/Communication Networks/19EC501
10.60

Figure 10.16  Division in the CRC decoder for two cases
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Figure 10.17  Hardwired design of the divisor in CRC
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Figure 10.18  Simulation of division in CRC encoder
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Figure 10.19  The CRC encoder design using shift registers
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Figure 10.20  General design of encoder and decoder of a CRC code
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Figure 10.21   A polynomial to represent a binary word
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Figure 10.22  CRC division using polynomials
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The divisor in a cyclic code is normally 

called the generator polynomial

or simply the generator.

Note
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In a cyclic code,

If s(x) ≠ 0, one or more bits is corrupted.

If s(x) = 0, either

a. No bit is corrupted. or

b. Some bits are corrupted, but the

decoder failed to detect them.

Note
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In a cyclic code, those e(x) errors that 

are divisible by g(x) are not caught.

Note
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If the generator has more than one term 

and the coefficient of x0 is 1, 

all single errors can be caught.

Note
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Which of the following g(x) values guarantees that a 

single-bit error is caught? For each case, what is the 

error that cannot be caught?

a. x + 1 b. x3 c. 1

Solution

a. No xi can be divisible by x + 1. Any single-bit error can

be caught.

b. If i is equal to or greater than 3, xi is divisible by g(x).

All single-bit errors in positions 1 to 3 are caught.

c. All values of i make xi divisible by g(x). No single-bit

error can be caught. This  g(x) is useless.

Example 10.15
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Figure 10.23  Representation of two isolated single-bit errors using polynomials
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If a generator cannot divide xt + 1 

(t between 0 and n – 1),

then all isolated double errors 

can be detected.

Note
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Find the status of the following generators related to two

isolated, single-bit errors.

a. x + 1 b. x4 + 1 c. x7 + x6 + 1 d. x15 + x14 + 1

Solution

a. This is a very poor choice for a generator. Any two

errors next to each other cannot be detected.

b. This generator cannot detect two errors that are four

positions apart.

c. This is a good choice for this purpose.

d. This polynomial cannot divide xt + 1 if t is less than

32,768. A codeword with two isolated errors up to

32,768 bits apart can be detected by this generator.

Example 10.16
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A generator that contains a factor of 

x + 1 can detect all odd-numbered 

errors.

Note
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❏ All burst errors with L ≤ r will be

detected.

❏ All burst errors with L = r + 1 will be

detected with probability 1 – (1/2)r–1.

❏ All burst errors with L > r + 1 will be

detected with probability 1 – (1/2)r.

Note
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Find the suitability of the following generators in relation 

to burst errors of different lengths.

a. x6 + 1 b. x18 + x7 + x + 1 c. x32 + x23 + x7 + 1

Solution

a. This generator can detect all burst errors with a length

less than or equal to 6 bits; 3 out of 100 burst errors

with length 7 will slip by; 16 out of 1000 burst errors of

length 8 or more will slip by.

Example 10.17
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b. This generator can detect all burst errors with a length

less than or equal to 18 bits; 8 out of 1 million burst

errors with length 19 will slip by; 4 out of 1 million

burst errors of length 20 or more will slip by.

c. This generator can detect all burst errors with a length

less than or equal to 32 bits; 5 out of 10 billion burst

errors with length 33 will slip by; 3 out of 10 billion

burst errors of length 34 or more will slip by.

Example 10.17 (continued)
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A good polynomial generator needs to 

have the following characteristics:

1. It should have at least two terms.

2. The coefficient of the term x0 should

be 1.

3. It should not divide xt + 1, for t

between 2 and n − 1.

4. It should have the factor x + 1.

Note
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Table 10.7  Standard polynomials
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10-5   CHECKSUM

The last error detection method we discuss here is

called the checksum. The checksum is used in the

Internet by several protocols although not at the data

link layer. However, we briefly discuss it here to

complete our discussion on error checking

Idea

One’s Complement

Internet Checksum

Topics discussed in this section:
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Suppose our data is a list of five 4-bit numbers that we

want to send to a destination. In addition to sending these

numbers, we send the sum of the numbers. For example,

if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,

0, 6, 36), where 36 is the sum of the original numbers.

The receiver adds the five numbers and compares the

result with the sum. If the two are the same, the receiver

assumes no error, accepts the five numbers, and discards

the sum. Otherwise, there is an error somewhere and the

data are not accepted.

Example 10.18
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We can make the job of the receiver easier if we send the

negative (complement) of the sum, called the checksum.

In this case, we send (7, 11, 12, 0, 6, −36). The receiver

can add all the numbers received (including the

checksum). If the result is 0, it assumes no error;

otherwise, there is an error.

Example 10.19
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How can we represent the number 21 in one’s

complement arithmetic using only four bits?

Solution

The number 21 in binary is 10101 (it needs five bits). We

can wrap the leftmost bit and add it to the four rightmost

bits. We have (0101 + 1) = 0110 or 6.

Example 10.20
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How can we represent the number −6 in one’s

complement arithmetic using only four bits?

Solution

In one’s complement arithmetic, the negative or

complement of a number is found by inverting all bits.

Positive 6 is 0110; negative 6 is 1001. If we consider only

unsigned numbers, this is 9. In other words, the

complement of 6 is 9. Another way to find the

complement of a number in one’s complement arithmetic

is to subtract the number from 2n − 1 (16 − 1 in this case).

Example 10.21
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Let us redo Exercise 10.19 using one’s complement

arithmetic. Figure 10.24 shows the process at the sender

and at the receiver. The sender initializes the checksum

to 0 and adds all data items and the checksum (the

checksum is considered as one data item and is shown in

color). The result is 36. However, 36 cannot be expressed

in 4 bits. The extra two bits are wrapped and added with

the sum to create the wrapped sum value 6. In the figure,

we have shown the details in binary. The sum is then

complemented, resulting in the checksum value 9 (15 − 6

= 9). The sender now sends six data items to the receiver

including the checksum 9.

Example 10.22
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The receiver follows the same procedure as the sender. It

adds all data items (including the checksum); the result

is 45. The sum is wrapped and becomes 15. The wrapped

sum is complemented and becomes 0. Since the value of

the checksum is 0, this means that the data is not

corrupted. The receiver drops the checksum and keeps

the other data items. If the checksum is not zero, the

entire packet is dropped.

Example 10.22 (continued)
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Figure 10.24  Example 10.22
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Sender site:
1. The message is divided into 16-bit words.

2. The value of the checksum word is set to 0.

3. All words including the checksum are

added using one’s complement addition.

4. The sum is complemented and becomes the

checksum.

5. The checksum is sent with the data.

Note
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Receiver site:
1. The message (including checksum) is

divided into 16-bit words.

2. All words are added using one’s

complement addition.

3. The sum is complemented and becomes the

new checksum.

4. If the value of checksum is 0, the message

is accepted; otherwise, it is rejected.

Note
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Let us calculate the checksum for a text of 8 characters

(“Forouzan”). The text needs to be divided into 2-byte

(16-bit) words. We use ASCII (see Appendix A) to change

each byte to a 2-digit hexadecimal number. For example,

F is represented as 0x46 and o is represented as 0x6F.

Figure 10.25 shows how the checksum is calculated at the

sender and receiver sites. In part a of the figure, the value

of partial sum for the first column is 0x36. We keep the

rightmost digit (6) and insert the leftmost digit (3) as the

carry in the second column. The process is repeated for

each column. Note that if there is any corruption, the

checksum recalculated by the receiver is not all 0s. We

leave this an exercise.

Example 10.23
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Figure 10.25  Example 10.23


