

Process-to-Process Delivery: UDP, TCP, and SCTP

23.1

23-1 PROCESS-TO-PROCESS DELIVERY

The transport layer is responsible for process-toprocess delivery—the delivery of a packet, part of a message, from one process to another. Two processes communicate in a client/server relationship, as we will see later.

Topics discussed in this section:

Client/Server Paradigm Multiplexing and Demultiplexing Connectionless Versus Connection-Oriented Service Reliable Versus Unreliable Three Protocols

The transport layer is responsible for process-to-process delivery.

23.6 Mr.K.K.RAJKU

We were 23.6 Multiplexing and demultiplexing

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.9

ure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

23-2 USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a connectionless, unreliable transport protocol. It does not add anything to the services of IP except to provide process-to-process communication instead of host-to-host communication.

Topics discussed in this section: Well-Known Ports for UDP User Datagram Checksum UDP Operation Use of UDP

Table 23.1 Well-known ports used with UDP

Port	Protocol	Description	
7	Echo	Echoes a received datagram back to the sender	
9	Discard	Discards any datagram that is received	
11	Users	Active users	
13	Daytime	Returns the date and the time	
17	Quote	Returns a quote of the day	
19	Chargen	Returns a string of characters	
53	Nameserver	Domain Name Service	
67	BOOTPs	Server port to download bootstrap information	
68	BOOTPe	Client port to download bootstrap information	
69	TFTP	Trivial File Transfer Protocol	
111	RPC	Remote Procedure Call	
123	NTP	Network Time Protocol	
161	SNMP	Simple Network Management Protocol	
162	SNMP	Simple Network Management Protocol (trap)	

In UNIX, the well-known ports are stored in a file called /etc/services. Each line in this file gives the name of the server and the well-known port number. We can use the grep utility to extract the line corresponding to the desired application. The following shows the port for FTP. Note that FTP can use port 21 with either UDP or TCP.

\$ grep	ftp	/etc/services	
ftp	21/tcp		
ftp	21/	'udp	

SNMP uses two port numbers (161 and 162), each for a different purpose, as we will see in Chapter 28.

\$ grep	snmp /etc/services	
snmp	161/tcp	#Simple Net Mgmt Proto
snmp	161/udp	#Simple Net Mgmt Proto
snmptrap	162/udp	#Traps for SNMP

UDP length = IP length – IP header's length

23.17

Figure 23.11 shows the checksum calculation for a very small user datagram with only 7 bytes of data. Because the number of bytes of data is odd, padding is added for checksum calculation. The pseudoheader as well as the padding will be dropped when the user datagram is delivered to IP.

153.18.8.105					
171.2.14.10					
All Os 17 15					
1087 13					
1	5	All Os			
Т	T E S		Т		
	I N		All Os		

10011001	00010010	 ≻	153.18
00001000	01101001	 ≻	8.105
10101011	00000010	 ≻	171.2
00001110	00001010	 ►	14.10
00000000	00010001	 ≻	0 and 17
00000000	00001111	 ≻	15
00000100	00111111	 ≻	1087
00000000	00001101	 ≻	13
00000000	00001111	 ≻	15
00000000	00000000	 ≻	0 (checksum)
01010100	01000101	 ≻	T and E
01010011	01010100	 ≻	S and T
01001001	01001110	 ≻	land N
01000111	00000000	 ►	G and 0 (padding)
10010110	11101011	 ►	Sum
10010110			Charaliseum
01101001	00010100	 -	Checksum

TCP is a connection-oriented protocol; it creates a virtual connection between two TCPs to send data. In addition, TCP uses flow and error control mechanisms at the transport level.

Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control

Table 23.2 Well-known ports used by TCP

Port	Protocol	Description		
7	Echo	Echoes a received datagram back to the sende		
9	Discard	Discards any datagram that is received		
11	Users	Active users		
13	Daytime	Returns the date and the time		
17	Quote	Returns a quote of the day		
19	Chargen	Returns a string of characters		
20	FTP, Data	File Transfer Protocol (data connection)		
21	FTP, Control	File Transfer Protocol (control connection)		
23	TELNET	Terminal Network		
25	SMTP	Simple Mail Transfer Protocol		
53	DNS	Domain Name Server		
67	BOOTP	Bootstrap Protocol		
79	Finger	Finger		
80	HTTP	Hypertext Transfer Protocol		
111	RPC	Remote Procedure Call		

Sending and receiving buffers

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.25

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.26

The bytes of data being transferred in each connection are numbered by TCP. The numbering starts with a randomly generated number.

The following shows the sequence number for each segment:

Segment 1	-	Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2	-	Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3	-	Sequence Number: 12,001 (range: 12,001 to 13,000)
Segment 4	-	Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment 5	-	Sequence Number: 14,001 (range: 14,001 to 15,000)

The value in the sequence number field of a segment defines the number of the first data byte contained in that segment.

ure 23.16 TCP segment format

URG: Urgent pointer is valid ACK: Acknowledgment is valid PSH: Request for push RST: Reset the connection SYN: Synchronize sequence numbers FIN: Terminate the connection

URG ACK	PSH RST	SYN	FIN
---------	---------	-----	-----

Table 23.3 Description of flags in the control field

Flag	Description		
URG	The value of the urgent pointer field is valid.		
ACK	The value of the acknowledgment field is valid.		
PSH	Push the data.		
RST	Reset the connection.		
SYN	Synchronize sequence numbers during connection.		
FIN	Terminate the connection.		

ure 23.18 Connection establishment using three-way handshaking

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.34

A SYN segment cannot carry data, but it consumes one sequence number.

A SYN + ACK segment cannot carry data, but does consume one sequence number.

23.36

An ACK segment, if carrying no data, consumes no sequence number.

23.38

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

ure 23.20 Connection termination using three-way handshaking

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.39

The FIN segment consumes one sequence number if it does not carry data.

23.40

The FIN + ACK segment consumes one sequence number if it does not carry data.

23.41

ure 23.21 Half-close

23.42

A sliding window is used to make transmission more efficient as well as to control the flow of data so that the destination does not become overwhelmed with data. TCP sliding windows are byte-oriented.

What is the value of the receiver window (rwnd) for host A if the receiver, host B, has a buffer size of 5000 bytes and 1000 bytes of received and unprocessed data?

Solution

The value of rwnd = 5000 - 1000 = 4000. Host B can receive only 4000 bytes of data before overflowing its buffer. Host B advertises this value in its next segment to A.

What is the size of the window for host A if the value of rwnd is 3000 bytes and the value of cwnd is 3500 bytes?

Solution The size of the window is the smaller of rwnd and cwnd, which is 3000 bytes.

Figure 23.23 shows an unrealistic example of a sliding window. The sender has sent bytes up to 202. We assume that cwnd is 20 (in reality this value is thousands of bytes). The receiver has sent an acknowledgment number of 200 with an rwnd of 9 bytes (in reality this value is thousands of bytes). The size of the sender window is the minimum of rwnd and cwnd, or 9 bytes. Bytes 200 to 202 are sent, but not acknowledged. Bytes 203 to 208 can be sent without worrying about acknowledgment. Bytes 209 and above cannot be sent.

ACK segments do not consume sequence numbers and are not acknowledged.

In modern implementations, a retransmission occurs if the retransmission timer expires or three duplicate ACK segments have arrived.

23.51

No retransmission timer is set for an ACK segment.

Data may arrive out of order and be temporarily stored by the receiving TCP, but TCP guarantees that no out-of-order segment is delivered to the process.

23.54

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.55

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

The receiver TCP delivers only ordered data to the process.

23.57

23-4 SCTP

Stream Control Transmission Protocol (SCTP) is a new reliable, message-oriented transport layer protocol. SCTP, however, is mostly designed for Internet applications that have recently been introduced. These new applications need a more sophisticated service than TCP can provide.

Topics discussed in this section:

SCTP Services and Features Packet Format An SCTP Association Flow Control and Error Control

SCTP is a message-oriented, reliable protocol that combines the best features of UDP and TCP.

23.59

Table 23.4 Some SCTP applications

Protocol	Port Number	Description
IUA	9990	ISDN over IP
M2UA	2904	SS7 telephony signaling
M3UA	2905	SS7 telephony signaling
H.248	2945	Media gateway control
H.323	1718, 1719, 1720, 11720	IP telephony
SIP	5060	IP telephony

An association in SCTP can involve multiple streams.

23.62

SCTP association allows multiple IP addresses for each end.

In SCTP, a data chunk is numbered using a TSN.

23.65

To distinguish between different streams, SCTP uses an SI.

To distinguish between different data chunks belonging to the same stream, SCTP uses SSNs.

23.67

TCP has segments; SCTP has packets.

23.68

ure 23.29 Comparison between a TCP segment and an SCTP packet

23.69

In SCTP, control information and data information are carried in separate chunks.

23.70

Flow of packets from sender to receiver

23.71

Data chunks are identified by three items: TSN, SI, and SSN. TSN is a cumulative number identifying the association; SI defines the stream; SSN defines the chunk in a stream.

In SCTP, acknowledgment numbers are used to acknowledge only data chunks; control chunks are acknowledged by other control chunks if necessary.

General header (12 bytes)		
Chunk 1 (variable length)		
Chunk N (variable length)		

In an SCTP packet, control chunks come before data chunks.

23.75

Source port address 16 bits	Destination port address 16 bits
Verification tag 32 bits	
Checksum 32 bits	

Description Type Chunk DATA User data 0 INIT 1 Sets up an association 2 INIT ACK Acknowledges INIT chunk 3 SACK Selective acknowledgment HEARTBEAT 4 Probes the peer for liveliness 5 HEARTBEAT ACK Acknowledges HEARTBEAT chunk ABORT Aborts an association 6 7 SHUTDOWN Terminates an association 8 SHUTDOWN ACK Acknowledges SHUTDOWN chunk Reports errors without shutting down 9 ERROR 10 COOKIE ECHO Third packet in association establishment Acknowledges COOKIE ECHO chunk 11 COOKIE ACK SHUTDOWN COMPLETE Third packet in association termination 14 192 FORWARD TSN For adjusting cumulative TSN

A connection in SCTP is called an association.

No other chunk is allowed in a packet carrying an INIT or INIT ACK chunk. A COOKIE ECHO or a COOKIE ACK chunk can carry data chunks.

23.80

In SCTP, only DATA chunks consume TSNs; DATA chunks are the only chunks that are acknowledged.

23.81

Simple data transfer

23.82

The acknowledgment in SCTP defines the cumulative TSN, the TSN of the last data chunk received in order.

ure 23.38 Flow control scenario

23.87

Mr.K.K.RAJKUMAR/Communication Networks/19EC501

23.88

