

SNS COLLEGE OF ENGINEERING

(Autonomous) DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT201 - DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

UNIT -1 COMBINATIONAL LOGIC

- Combinational circuits are digital circuits where the output is determined solely by the current input.
- They are the building blocks of more complex digital systems, enabling efficient logic operations and decision-making capabilities.

2

Boolean Algebra and Logic Gates

3

Truth Tables

Systematically mapping all possible input combinations to their corresponding outputs.

Boolean Expressions

Algebraic representations of the logic function, using AND, OR, and NOT operations.

Karnaugh Maps

Graphical method for simplifying Boolean expressions and minimizing logic circuits.

Combinational Circuit Analysis

1

Input Identification

Determine the inputs that affect the output of a combinational circuit.

2

Truth Table Generation

Construct a truth table to represent the logic function of the circuit.

Combinational Circuit

+ m

3

Output Determination

Analyze the truth table to identify the output for each input combination.

n

5

Combinational Circuit Optimization

Simplify Boolean Expressions

Use Boolean algebra and Karnaugh maps to minimize the number of logic gates required.

Reduce Propagation Delay

Arrange logic gates in a way that minimizes the time it takes for signals to propagate through the circuit.

Improve Power Efficiency

Design circuits that consume less power by reducing the number of active components.

6

23ECB204/ DE & MP / V.AISHWARYA, AP/ECE / Unit 1/ Combinational Circuits

O Multiplexer

Routes one of many input signals to a single output based on a select signal.

Connects a single input to one of many outputs based on a select signal.

7

Encoders and Decoders

Encoder

Converts a set of parallel inputs into a coded output, such as binary.

Binary to Seven-Segment Decoder

Converts a binary input into the appropriate signals to drive a seven-segment display.

Decoder

3

Converts a coded input into a set of parallel outputs, activating the corresponding output.

23ITT201 / DP & CO / S.PRIYANKA, AP/IT / Unit 1/ Combinational Circuits

8

Arithmetic Circuits	Adders, Subtractors, Multipliers	
Comparators	Greater Than, Less Than, Equal To	
Parity Generators	Detect errors in data transmission	
Code Converters	Binary to BCD, Binary to Gray Code	
		(t++)

