CARBOHYDRATES, LIPIDS, AND PROTEINS

Introduction

Macromolecul

- e □ <u>Definition</u>: big ol' molecule
 - Carbs, lipids, and proteins are ALL members of this group

Polymer

- \square "Poly" = many
- Definition: a macromolecule made of repeating units called "monomers" (mono = one)
- Carbs, lipids, and proteins are ALL also members of this group
 Polymer

Polymer made of monomers

How to MAKE C/L/P's

Dehydration
 Synthesis[®] aration" = to remove water
 "synthesis" = to make
 Definition: the process of CREATING carbs, lipids, and proteins by removing water
 Animation of this process

Dehydration Synthesis-Hydrolysis

How to BREAK C/L/P's

Hydrolysis

- □ "hydro" = water
- \square "lysis" = to destroy
- Definition: the process of DESTROYING carbs, lipids, and proteins by the addition of water
- How our bodies break down the foods we eat into the monomers that make them up (only monomers can be absorbed)
- □ Animation of this process:
 - Dehydration Synthesis-Hydrolysis

Carbohydrates

Sevence Grain based foods
Chemical make-up
carbo - contains C
hydrate –contains O and H (in 2:1 ratio like in water)
Carbs are our main energy source (55%-65%)

of daily caloric intake)

Carbs are polymers made up of MOMPACASE the monomers (building blocks) of carbs?

- Several names (all mean the same thing)
 - Monosaccharides
 - Simple sugars
- □ Who are the simple sugars?
 - "-ose" = sugar
 - All have general formula $-C_6H_{12}O_6$
 - Ex. Glucose, galactose, fructose (are isomers of one another)

Simple sugar structural formulas:

H - Ç = O	Н - С - ОН	H - Ç = O
н - ċ - он	H - Ċ = O	н - ċ - он
но - ċ - н	но - ċ - н	но - с - н
н-с-он	н - с - он	но - с - н
н - с - он	н - с - он	н - с - он
н - с - он	н - с - он	н - ċ - он
н́	Ĥ	Ĥ

glucose

fructose

galactose

S

- saccharide = sugar
- Definition –double sugar made up of two simple sugars chemically combined

□ Introducing the disaccharides!

- Sucrose (table sugar) = glucose + fructos
- Lactose (milk sugar) = glucose + galactos
- Maltose (malt sugar) = glucose + glucose

Polysaccharid

- **es** □ "saccharide" = sugar
 - Definition –a carbohydrate made up of many simple sugars chemically combined together
 - □ Also called "complex carbohydrates"
 - Introducing the polysaccharides!
 - 1. Starch- energy storage for plants.
 - [Test for starch: Lugol's stain- turns starch purple
 - 2. Cellulose (fiber) contained within cell walls of plants (give structure)
 - *3. Glycogen* energy storage for animals (mostly found in the

muscle tissue)

• 4. Chitin- exoskeleton of some animals

How the body uses glucose from food:
 1. energy for life processes

□ 2. extra glucose: stored as glycogen for later use

3. extra, extra glucose: stored as fat for MUCH later use

Energy from food

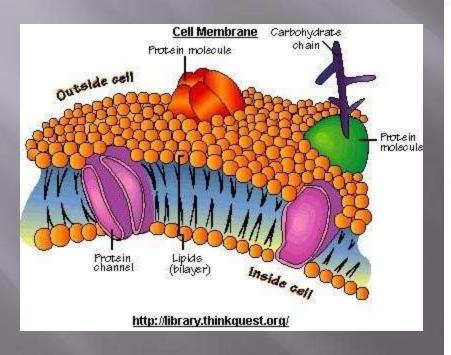
How much energy does each macronutrient have?

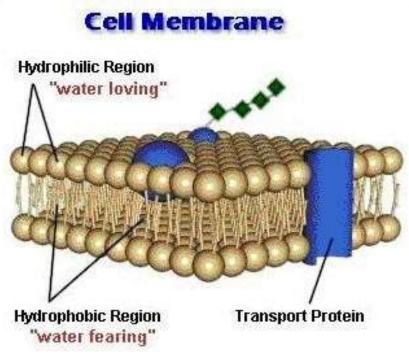
Calories: units of energy given off by a food

Carbs: 4 cal/gram
Protein: 4 cal/gram
Fat: 9 cal/gram

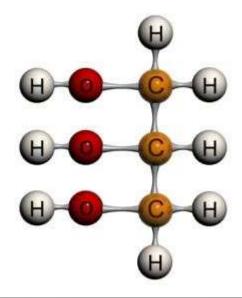
Dietary
 Sourage fat sources
 Chemical make-up

 Contains C, H, and O
 Lipids are our secondary energy source (mostly stored for use later)


Categories of lipids Waxes

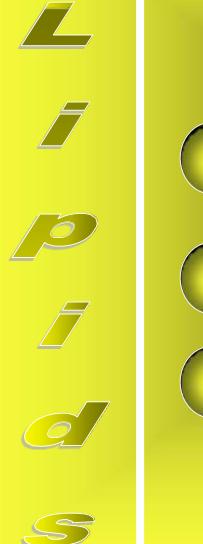

- Ear wax
- Bees wax
- Steroids
 - Cholesterol
 - Hormones
- Lecithin
 - Wraps nerve cells
 - Why is this important?
- □ Fats/Oils
 - Animal fat- solid at room temperature
 - Plant oils- liquid at room temperature

Uses of Lipids


Long-term energy storage Production of cell membranes

How to build a li

Monomers Draw this ---- \rightarrow □ Glycerol Three carbon alcohol Long chain fatty acids (carbon chain) Several different types [Saturated, unsaturated, polyunsaturated] Created by... □ DEHYDRATION SYNTHESIS Broken down by... □ HYDROLYSIS


Fats, Carbs, and Proteins

Long chain fatty acid

Glycerol

Saturated

fats Fats that have all of their carbons filled with hydrogens

- NO double bonds in long chain fatty acid
- Unsaturated fats
 - Fats that don't have all of their carbons filled with hydrogens

Must contain a double bond line in long chain fatty acids

- Which ones are more healthy?
 - □ Unsaturated

PROTEINS

The most important compound in your body!!!!

Dietary Sources

Beef
Chicken
Fish
Nuts
Beans

Chemical make-up of proteins

Chemical make-up of carbs? H, O
Chemical make-up of lipids?
C, H, O
Chemical make-up of proteins?
C, H, O, N and sometimes S

Function of Proteins

Main function of carbs? Primary source or short term energy Main function of lipids? Secondary source or long term storage, insulation, cell membrane structure Main function of proteins □ Growth □ Repair

Two main types of proteins

Structural- build things
 Globular- travel through the body independently

Structural proteins

Muscle tissue □ Actin and myosin fibers Keratin □ Hair □ Nails Rhino horn Collagen □ Connective matrix

Keeps skin smooth (breaks down as you get older)

Globular Proteins

Hemoglobin

- O₂ binds with use of iron to carry oxygenated blood around the body
- Insulin
 - Opens muscles to allow glucose to enter
 - Controls glucose levels in the bloodstream

Antibodies

- Help fight infection in the body
- Produced by white blood cells

Globular proteins (cont.)

S

Enzyme Also called organic catalysts
Reduce activation energy of a reaction
Lowers amount of energy needed to start reaction
Helps reaction go faster

Structure of proteins

 Consist of monomers called amino acid 20 different types of amino acids make up all proteins

□ 8are "essential" amino acids

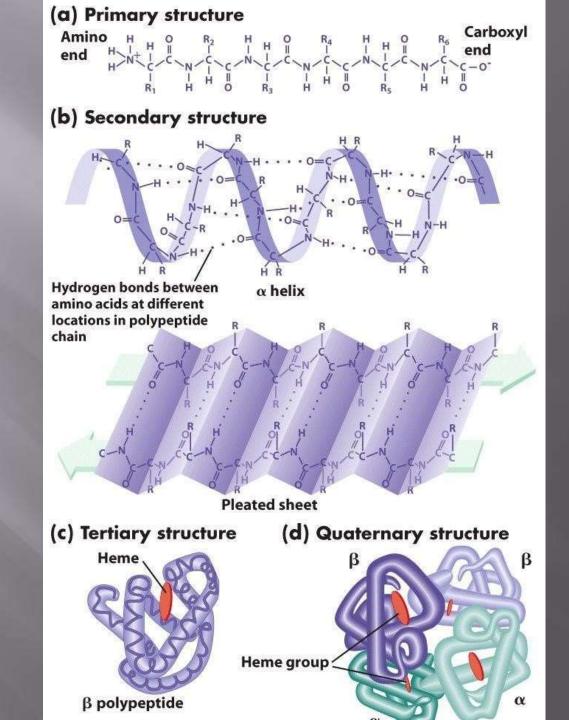
• Means that your body can't produce them naturally

- Contains C, H, O, N, and S (only one amino acid contains S)
- Built just like every other organic compound!
 Dehydration synthesis
- Broken down just like every other organic compound!
 - □ Hydrolysis

Structure of Proteins (cont)

Proteins organized on four different levels
 Primary (1°)
 Secondary (2°)
 Tertiary (3°)
 Quaternary (4°)

Structure of Proteins (cont)


Primary (1°)

Unique sequence of amino acids

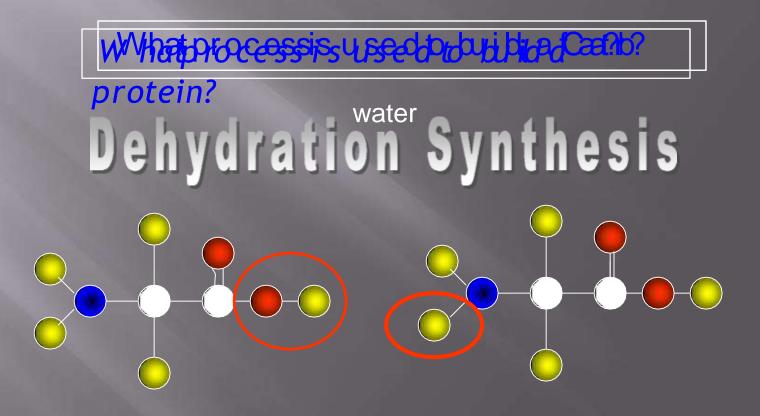
- Secondary
 - (2°)
- Alpha helix
 - Amino acid sequence coils up with use of H bonds
 - Beta sheet
 - Amino acid sequence "pleats" with use of H bonds

Tertiary (3°)

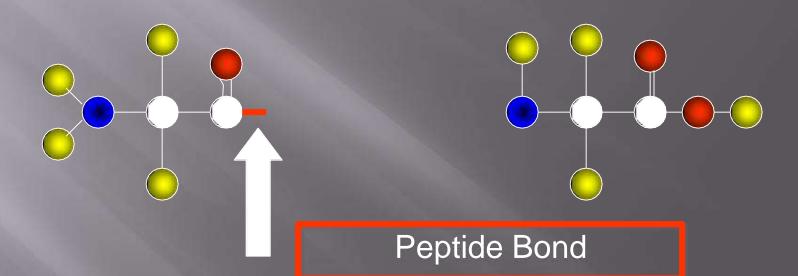
- Alpha helix and beta sheets fold onto one another to form a "subunit"
- Quaternary (4°)
 - Subunits bond together

General Structure for an Amino Acid

R


Key Carbon

Carboxyl Group


Amine Group

Radical group = only part that changes in different AA's

Putting Together the Building Blocks

Putting Together The Building Blocks (cont)

Two characteristics of a peptide bond a. Carbon –nitrogen bond b. Double bonded oxygen on carbon atom

Enzyme terms to know

 Enzyme = protein that speeds up (reduces activation energy) of a process
 Substrate = substance enzyme interacts with
 Enzyme-substrate complex = joining together of substrate and enzyme
 Active site = open face of enzyme to which the substrate attaches

"Lock and Key"

- Enzymes work in a "lock and key" relationship
 - Active site of enzyme is shaped to connect with very SPECIFIC substrates
 - □ If the shapes don't fit, the enzyme can't do its job
 - After the joining of the substrate and enzyme, substrate (and NOT enzyme- the enzyme must stay the same so it can be used again) is changed in some way to help speed up reaction

- When bonds of active site break the shape of a protein
- Makes them unable to do their jobs correctly
- Can happen for many reasons: