

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

Serial Communication

1. What is the primary purpose of serial communication in the context of a 5x5 sliding puzzle embedded system?

- a) To display the puzzle on an LCD
- b) To send puzzle data between the embedded system and a host computer
- c) To control the movement of tiles in the puzzle
- d) To generate random puzzle configurations

Answer: b) To send puzzle data between the embedded system and a host computer

2. Which serial communication protocol is commonly used in embedded systems to communicate with other devices?

a) I2C

b) SPI

c) UART

d) CAN

Answer: c) UART

3. What type of data format is typically used to represent the state of the 5x5 sliding puzzle over a serial connection?

a) CSV (Comma-Separated Values)

b) JSON (JavaScript Object Notation)

c) Binary format

d) XML (eXtensible Markup Language)

Answer: c) Binary format

4. Which of the following is a common configuration parameter for UART serial communication?

- a) Baud rate
- b) Frame rate
- c) Packet size
- d) Bit depth

Answer: a) Baud rate

5. How does serial communication handle the transmission of the 5x5 puzzle state from an embedded system to a PC?

- a) By sending the entire puzzle state as a single block of data
- b) By sending individual tiles one at a time
- c) By sending data in packets with a predefined structure
- d) By using a wireless protocol

Answer: c) By sending data in packets with a predefined structure

6. In serial communication, what does the term "baud rate" refer to?

- a) The maximum number of bytes that can be transmitted per second
- b) The speed at which data is transmitted over the serial line
- c) The size of the data packets
- d) The error-checking mechanism used

Answer: b) The speed at which data is transmitted over the serial line

7. What is a common method for ensuring data integrity during serial communication of the puzzle state?

- a) Using error correction codes
- b) Increasing the baud rate

c) Reducing the packet size

d) Using compression algorithms

Answer: a) Using error correction codes

8. Which part of the serial communication process would you configure to match the baud rate of a 5x5 sliding puzzle embedded system with a PC?

a) The serial port settings on both devices

- b) The data encoding scheme
- c) The error-checking algorithm
- d) The puzzle-solving algorithm

Answer: a) The serial port settings on both devices

9. What does the "handshake" process in serial communication ensure?

- a) The data is transmitted without errors
- b) The devices are ready to send and receive data
- c) The data is compressed before transmission
- d) The devices are synchronized to the same clock

Answer: b) The devices are ready to send and receive data

10. In the context of serial communication, what is the function of "start" and "stop" bits?

- a) To delimit the beginning and end of a data packet
- b) To indicate the start and stop of the data transmission session
- c) To provide error correction for the transmitted data
- d) To synchronize the baud rate between devices

Answer: a) To delimit the beginning and end of a data packet

11. How can you implement a command to shuffle the tiles in the 5x5 sliding puzzle via serial communication?

a) Send a specific command code to the embedded system

- b) Send the entire state of the puzzle to the host system
- c) Modify the baud rate settings
- d) Send the puzzle-solving algorithm over the serial line

Answer: a) Send a specific command code to the embedded system

12. What is the role of the parity bit in serial communication?

- a) To check for errors in the transmitted data
- b) To determine the baud rate
- c) To compress the data for faster transmission
- d) To synchronize the clock between devices

Answer: a) To check for errors in the transmitted data

13. How can you handle data loss or corruption during serial transmission of the puzzle state?

- a) Implement data retransmission protocols
- b) Increase the baud rate
- c) Use a different serial communication protocol
- d) Avoid sending large amounts of data

Answer: a) Implement data retransmission protocols

14. What is a typical method to synchronize the start and end of data frames in serial communication?

- a) Use specific start and stop bits
- b) Implement a header and footer for each data frame
- c) Adjust the baud rate dynamically
- d) Use a checksum for error detection

Answer: b) Implement a header and footer for each data frame

15. How do you typically indicate the end of a data transmission session in serial communication?

- a) Sending a specific end-of-transmission character
- b) Adjusting the parity bit
- c) Reconfiguring the baud rate
- d) Sending a start bit

Answer: a) Sending a specific end-of-transmission character

16. What is a common approach to control tile movements in a 5x5 sliding puzzle via serial communication?

- a) Send movement commands to the embedded system
- b) Transmit the entire puzzle state to be updated
- c) Adjust the system's internal clock
- d) Use a graphical user interface (GUI) for control
- Answer: a) Send movement commands to the embedded system

17. What is the benefit of using a checksum in serial communication for the 5x5 sliding puzzle?

- a) To verify the integrity of the transmitted data
- b) To increase the transmission speed
- c) To compress the data for efficiency
- d) To handle high-resolution graphics

Answer: a) To verify the integrity of the transmitted data

18. Which serial communication setting would you adjust to troubleshoot data transmission issues?

a) Baud rate

b) Data frame size

- c) Start bit length
- d) End bit length
- Answer: a) Baud rate

19. How can you verify that the embedded system correctly received and processed a command sent over serial communication?

- a) Implement an acknowledgment response from the embedded system
- b) Increase the data transmission rate
- c) Use a different serial communication protocol
- d) Ensure the command is formatted correctly

Answer: a) Implement an acknowledgment response from the embedded system

20. What kind of data might be included in a command packet sent to the embedded system to manipulate the puzzle?

- a) Command code, tile position, and movement direction
- b) Puzzle-solving algorithm and display settings
- c) Baud rate and parity settings
- d) Memory address and configuration data

Answer: a) Command code, tile position, and movement direction

21. When implementing serial communication for a 5x5 sliding puzzle, what is a key consideration for data synchronization?

- a) Consistent baud rate across devices
- b) Size of the puzzle display
- c) Color depth of the display
- d) Frequency of screen refreshes
- Answer: a) Consistent baud rate across devices

22. In serial communication, what is the significance of data framing?

- a) It allows for the organization and interpretation of data packets
- b) It increases the data transmission speed
- c) It manages the synchronization of the clock
- d) It compresses the data for efficient transmission

Answer: a) It allows for the organization and interpretation of data packets

23. What type of serial communication error can occur if the baud rates are mismatched between devices?

- a) Data corruption or loss
- b) Increased power consumption
- c) Hardware damage
- d) Display flickering

Answer: a) Data corruption or loss

24. Which device component is responsible for converting parallel data to serial data in a serial communication setup?

a) UART (Universal Asynchronous Receiver/Transmitter)

- b) Microcontroller
- c) EEPROM
- d) Display controller

Answer: a) UART (Universal Asynchronous Receiver/Transmitter)

25. How can you ensure that the puzzle state data sent over serial communication is both reliable and efficient?

- a) Use a well-defined data packet structure with error checking
- b) Increase the baud rate to the maximum
- c) Compress the data excessively

d) Reduce the frequency of data transmission

Answer: a) Use a well-defined data packet structure with error checking