

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of AI&DS

Course Name – 19GE701 PROFESSIONAL ETHICS IV Year / VII Semester

Unit 2 – Engineering as social experimentation Engineers as responsible experimenters

Introduction Definition: What it means to be a responsible experimenter. Importance: Why responsibility matters in engineering experiments.

Professional Ethics /AI&DS / SNSCE

The Role of Engineers in Experiments Responsibilities:

Overview of responsibilities engineers have when conducting experiments. Examples:

Types of experiments engineers typically conduct (e.g., materials testing, simulations, prototype development).

Ethical Considerations Informed Consent: Ensuring that all participants (if applicable) are aware of and agree to the experiment. Confidentiality: Protecting sensitive information. **Avoiding Harm:** Minimizing risks to people and the environment.

Legal and Regulatory Standards Compliance: Adhering to relevant laws and regulations (e.g., safety standards, environmental regulations). Documentation: Importance of accurate and thorough documentation

Best Practices for Responsible Experimentation Planning: Careful design and planning of experiments. Risk Assessment: Identifying and mitigating potential risks. Peer Review: Seeking feedback and validation from colleagues.

Case Studies

Positive Example: A case where responsible experimentation led to successful outcomes. **Negative Example:** A case where lack of responsibility led to issues or failures.

Tools and Technologies Software: Tools for simulation and modeling (e.g., MATLAB, Simulink). Equipment: Safety and quality control equipment. Data Management: Best practices for handling and analyzing data.

Communication and Collaboration Teamwork: Importance of working collaboratively and communicating effectively. Transparency: Sharing findings and methodologies with the wider community.

Future Trends

Emerging Technologies: How new technologies (e.g., AI, advanced materials) impact experimentation. Evolving Standards: Anticipated changes in ethical and regulatory standards.

Conclusion Summary: Recap of key points. Call to Action: Encouraging responsible practices in engineering.