

Evolution of Operating System

- Several Distinct Phases:
 - Hardware Expensive, Humans Cheap
 - Eniac, ... Multics

Thomas Watson was often called "the worlds greatest salesman" by the time of his death in 1956

- Several Distinct Phases:
 - Hardware Expensive, Humans Cheap
 - Eniac, ... Multics
 - Hardware Cheaper, Humans Expensive
 - PCs, Workstations, Rise of GUIs

Several Distinct Phases:

- Hardware Expensive, Humans Cheap
 - Eniac, ... Multics
- Hardware Cheaper, Humans Expensive
 - PCs, Workstations, Rise of GUIs
- Hardware Really Cheap, Humans Really Expensive
 - Ubiquitous devices, Widespread networking

9/3/2024

- Rapid change in hardware leads to changing OS
 - Batch \Rightarrow Multiprogramming \Rightarrow Timesharing \Rightarrow Graphical UI \Rightarrow Ubiquitous Devices
 - Gradual migration of features into smaller machines
- Today
 - Small OS: 100K lines / Large: 10M lines (5M browser!)
 - 100-1000 people-years

OS Archaeology

- Because of the cost of developing an OS from scratch, most modern OSes have a long lineage:
- Multics \rightarrow AT&T Unix \rightarrow BSD Unix \rightarrow Ultrix, SunOS, NetBSD,...
- Mach (micro-kernel) + BSD → NextStep → XNU
 → Apple OS X, iPhone iOS
- MINIX → Linux → Android OS, Chrome OS, RedHat, Ubuntu, Fedora, Debian, Suse,...
- CP/M \rightarrow QDOS \rightarrow MS-DOS \rightarrow Windows 3.1 \rightarrow NT \rightarrow 95 \rightarrow 98 \rightarrow 2000 \rightarrow XP \rightarrow Vista \rightarrow 7 \rightarrow 8

$$\rightarrow$$
 10 \rightarrow phone \rightarrow ...

Migration of OS Concepts and

Features

Today: Four Fundamental OS Concepts

• Thread

- Single unique execution
- Program Counter, Registers, Execution Flags, Stack
- Address space (with translation)
 - Programs execute in an *address space* that is distinct from the memory space of the physical machine

• Process

 An instance of an executing program is a process consisting of an address space and one or more threads of control

• Dual mode operation / Protection

- Only the "system" has the ability to access certain resources
- The OS and the hardware are protected from user programs and user programs are isolated from one another by controlling the translation from program virtual addresses to machine physical addresses

Computing Environments – Traditional

- Stand-alone general purpose machines
- But blurred as most systems interconnect with others (i.e., the Internet)
- **Portals** provide web access to internal systems
- Network computers (thin clients) are like Web terminals
- Mobile computers interconnect via wireless networks
- Networking becoming ubiquitous even home systems use firewalls to protect home computers from Internet attacks

Computing Environments – Mobile

- Handheld smartphones, tablets, etc
- What is the functional difference between them and a "traditional" laptop?
- Extra feature more OS features (GPS, gyroscope)
- Allows new types of apps like *augmented reality*
- Use IEEE 802.11 wireless, or cellular data networks for connectivity
- Leaders are Apple iOS and Google Android

Computing Environments –

- Distributed computing
 Distributed
 - Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Network Operating System provides features between systems across network
 - Communication scheme allows systems to exchange messages

Computing Environments –

Client-Server

- **Client-Server** Computing
 - Dumb terminals supplanted by smart PCs •
 - Many systems now servers, responding to requests • generated by clients
 - Compute-server system provides an interface to client to request services (i.e., database)
 - File-server system provides interface for clients to store and retrieve files

Computing Environments – Peer-to-Peer

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead all nodes are considered peers
 - May each act as client, server or both
 - Node must join P2P network
 - Registers its service with central lookup service on network, or
 - Broadcast request for service and respond to requests for service via *discovery protocol*
 - Examples include Napster and Gnutella,
 Voice over IP (VoIP) such as Skype

Computing Environments – Virtualization

- Allows operating systems to run applications within other OSes
 - Vast and growing industry
- Emulation used when source CPU type different from target type (i.e. PowerPC to Intel x86)
 - Generally slowest method
 - When computer language not compiled to native code Interpretation
- Virtualization OS natively compiled for CPU, running guest
 OSes also natively compiled
 - Consider VMware running WinXP guests, each running applications, all on native WinXP host OS
 - VMM (virtual machine Manager) provides virtualization services

Computing Environments – Virtualization

- Use cases involve laptops and desktops running multiple OSes for exploration or compatibility
 - Apple laptop running Mac OS X host, Windows as a guest
 - Developing apps for multiple OSes without having multiple systems
 - QA testing applications without having multiple systems
 - Executing and managing compute environments within data centers
- VMM can run natively, in which case they are also the host
 - There is no general purpose host then (VMware ESX and Citrix XenServer)

Computing Environments – Virtualization

Computing Environments – Cloud Computing

- Delivers computing, storage, even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base for it functionality.
 - Amazon EC2 has thousands of servers, millions of virtual machines, petabytes of storage available across the Internet, pay based on usage
- Many types
 - Public cloud available via Internet to anyone willing to pay
 - Private cloud run by a company for the company's own use
 - Hybrid cloud includes both public and private cloud components
 - Software as a Service (SaaS) one or more applications available via the Internet (i.e., word processor)
 - Platform as a Service (PaaS) software stack ready for application use via the Internet (i.e., a database server)
 - Infrastructure as a Service (laaS) servers or storage available over Internet (i.e., storage available for backup use)

- Cloud computing environments composed of traditional OSes, plus VMMs, plus cloud management tools
 - Internet connectivity requires security like firewalls
 - Load balancers spread traffic across multiple applications

Computing Environments – Real-Time Embedded Systems

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose
 OS, real-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing *must* be done within constraint
 - Correct operation only if constraints met

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection and Digital Rights Management (DRM) movement
- Started by Free Software Foundation (FSF), which has "copyleft" GNU Public License (GPL)
- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X), and many more
- Can use VMM like VMware Player (Free on Windows), Virtualbox (open source and free on many platforms http://www.virtualbox.com)
 - Use to run guest operating systems for exploration