
UNIT 5: 

1. In your test automation project, you encounter a web page with 
dynamic elements that change their properties or IDs every time 
the page loads. How would you handle these dynamic elements in 
your test automation scripts? 

Solution: 

1. Use Stable Locators: 

 Relative Locators: Use relative locators (e.g., finding elements 
based on their position relative to other elements) instead of 
relying on IDs or classes that change dynamically. 

 XPath/CSS Selectors: Use XPath or CSS selectors that are 
resilient to changes in the element's properties. For example, 
use attributes that are less likely to change, like text or 
hierarchical structure. 

2. Implement Explicit Waits: 

 WebDriverWait: Use explicit waits to wait for elements to 
become present, visible, or clickable before interacting with 
them. This approach helps handle elements that load 
dynamically. 

2. You want to implement data-driven testing for a login 
functionality where the input data (username and password) varies. 
How would you design and implement a data-driven test? 

Solution: 

1. Prepare Test Data: 

 Store test data in an external file, such as an Excel sheet, CSV 
file, or JSON file. 

2. Read Data in Test Scripts: 

 Use libraries to read data from the file and iterate through it to 
run tests with different data sets. 

3. Implement Data-Driven Test: 



 Example Using Python + Selenium + CSV File: 
 CSV File (data.csv) 
 username,password 
 testuser1,securepass1 
 testuser2,securepass2 
 testuser3,securepass3 

3.Your test automation suite is growing, and maintaining the 
scripts has become challenging. What strategies would you use to 
manage and maintain your test scripts effectively? 

Solution: 

1. Modularize Test Scripts: 

 Reusable Components: Break down test scripts into reusable 
functions or methods. For example, create separate functions 
for login, registration, and other common actions. 

2. Use Page Object Model (POM): 

 Encapsulation: Implement Page Object Model to separate test 
logic from page-specific locators and actions. This makes it 
easier to update locators and interactions when the UI 
changes. 

3. Implement Version Control: 

 Source Control: Use version control systems like Git to 
manage changes to test scripts and collaborate with team 
members. 

4. Regularly Review and Refactor: 

 Code Reviews: Periodically review and refactor test scripts to 
remove redundancy and improve maintainability. 

5. Use Test Automation Frameworks: 

 Frameworks: Implement test automation frameworks (e.g., 
TestNG for Java, Pytest for Python) that provide structure and 
best practices for organizing and executing tests. 

 


