19EE701 – AI TECHNIQUES IN ELECTRICAL ENGINEERING UNIT 3 – FUZZY LOGIC & ANFIS

Topic : Defuzzification Methods

1. Introduction to Defuzzification

- 1.1. Definition
 - Defuzzification: The process of converting a fuzzy set, obtained from fuzzy inference, into a single crisp value. This step is crucial for translating the fuzzy output of a fuzzy inference system into a practical decision or action.

1.2. Purpose

- To produce a clear and actionable output from fuzzy logic systems, which can then be used for control decisions, recommendations, or any application requiring precise outputs.
- 2. Common Defuzzification Methods
- 2.1. Centroid Method (Center of Gravity)
 - Definition: Calculates the center of gravity (centroid) of the aggregated fuzzy set. This method provides the weighted average of all possible values, considering their membership degrees.
 - Formula:

$$ext{Defuzzified Value} = rac{\int x \cdot \mu_A(x) \, dx}{\int \mu_A(x) \, dx}$$

where $\mu_A(x)$ is the membership function of the aggregated fuzzy set.

- Steps:
 - 1. Compute the area under the curve of the membership function.
 - 2. Multiply each value x by its membership degree $\mu_A(x)$.
 - 3. Integrate these products over the range of $\boldsymbol{x}.$
 - 4. Divide by the integral of the membership function.
- Advantages:
 - Provides a balanced representation of the fuzzy set.
 - Commonly used and widely accepted.
- Disadvantages:
 - Computationally intensive, especially for complex or multi-dimensional fuzzy sets.

2.2. Maximum Membership Principle (Height Method)

- Definition: Selects the value with the highest membership degree from the fuzzy set.
- Formula:

Defuzzified Value = $\arg \max(\mu_A(x))$

Steps:

1. Identify the membership value $\mu_A(x)$ for all x.

- 2. Choose the value x where $\mu_A(x)$ is maximum.
- Advantages:
 - Simple and easy to compute.
 - Useful for cases where the maximum membership value is the most significant.
- Disadvantages:
 - · May not consider the distribution of membership values across the range.
 - · Can be misleading if there are multiple peaks in the membership function.

2.3. Weighted Average Method (Mean of Maxima)

- Definition: Computes the weighted average of the output values based on their membership degrees.
- Formula:

Defuzzified Value =
$$\frac{\sum x_i \cdot \mu_A(x_i)}{\sum \mu_A(x_i)}$$

where x_i are discrete values, and $\mu_A(x_i)$ are their corresponding membership degrees.

- Steps:
 - 1. List the discrete values and their membership degrees.
 - Calculate the weighted average by summing the products of values and their membership degrees.
 - 3. Normalize by dividing by the sum of the membership degrees.

Advantages:

•

- Takes into account the distribution of membership values.
- Computationally less intensive than the centroid method.
- Disadvantages:
 - Less precise than the centroid method in cases of highly non-uniform membership functions.

2.4. Weighted Sum Method

- **Definition:** Similar to the weighted average, but focuses on the aggregation of multiple fuzzy outputs.
 - Formula:

Defuzzified Value =
$$rac{\sum w_i \cdot x_i}{\sum w_i}$$

where w_i are the weights (which can be the membership values) and x_i are the corresponding values.

• Steps:

- 1. Calculate the weighted sum of the output values.
- 2. Normalize by dividing by the total weight.
- Advantages:
 - Useful for aggregating multiple fuzzy outputs.

• Disadvantages:

• May not handle non-uniform membership functions as effectively as other methods.

2.5. Barycenter Method

- **Definition:** A variant of the centroid method where the fuzzy set is discretized, and the defuzzification is based on a discrete approximation of the centroid.
- Formula: Similar to the centroid method but applied to discrete data points.
- Steps:
 - 1. Discretize the fuzzy set.
 - 2. Apply the centroid formula to the discrete data.
- Advantages:
 - \circ $\;$ Useful when dealing with discrete fuzzy sets or approximations.

• Disadvantages:

 \circ $\;$ May lose precision due to discretization.

3. Choosing the Right Method

3.1. Factors to Consider

- **Complexity of the Fuzzy Set:** For complex fuzzy sets, methods like the centroid might be more appropriate despite their computational cost.
- Application Requirements: Simpler methods like the maximum membership principle might suffice for applications needing quick and straightforward results.
- **Computational Resources:** Computationally intensive methods may not be suitable for real-time systems with limited processing power.

3.2. Trade-offs

- **Precision vs. Computational Cost:** More precise methods (e.g., centroid) are often more computationally expensive.
- **Simplicity vs. Accuracy:** Simpler methods (e.g., maximum membership principle) may be less accurate but are computationally efficient.