19EE701 – AI TECHNIQUES IN ELECTRICAL ENGINEERING UNIT 2 – NEURAL NETWORKs

Topic : Neural Network Model Architecture

1. Introduction to Neural Networks

- **Definition:** Neural networks are computational models inspired by the human brain. They consist of interconnected layers of nodes (neurons) that process information in stages.
- Basic Terminology:
 - **Neuron:** Basic unit of a neural network.
 - Layer: A collection of neurons.
 - Activation Function: A function that determines the output of a neuron.

2. Feedforward Neural Networks (FNN)

- Structure:
 - **Input Layer:** Takes in input features.
 - Hidden Layers: Intermediate layers where computation occurs.
 - **Output Layer:** Produces the final output.
- Activation Functions:
 - **Sigmoid:** $\sigma(x)=11+e-x \otimes igma(x) = \frac{1}{1+e^{-x}} = \frac{1}{1+e^{-x}}$
 - **ReLU** (Rectified Linear Unit): $ReLU(x) = max[f_0](0,x) \setminus text{ReLU}(x) = \max(0, x)ReLU(x) = max(0,x)$
 - Tanh: $tanh(x)=ex-e-xex+e-x\t(tanh)(x) = \frac{e^x e^{-x}}{e^x e^{-x}}$

3. Convolutional Neural Networks (CNN)

- **Purpose:** Specialized for processing grid-like data (e.g., images).
- Layers:
 - **Convolutional Layers:** Apply convolutional filters to the input.
 - **Pooling Layers:** Reduce the spatial dimensions (e.g., Max Pooling).
 - Fully Connected Layers: Classic dense layers used for final classification.
- Activation Function: Often ReLU.

4. Recurrent Neural Networks (RNN)

• **Purpose:** Designed for sequential data (e.g., time series, text).

- Components:
 - **Recurrent Layer:** Allows information to persist by using the output of one time step as input to the next.
 - **Vanishing Gradient Problem:** A challenge where gradients can become very small, hampering learning.
- Variants:
 - **Long Short-Term Memory (LSTM):** Addresses the vanishing gradient problem using gates (input, output, and forget gates).
 - **Gated Recurrent Unit (GRU):** A simplified version of LSTMs with fewer gates.

5. Generative Adversarial Networks (GANs)

- **Purpose:** Used for generating synthetic data that resembles real data.
- Components:
 - **Generator:** Creates new data samples.
 - **Discriminator:** Evaluates the authenticity of generated samples.
- **Training Process:** The generator and discriminator are trained in opposition, improving each other iteratively.

6. Autoencoders

- **Purpose:** Learn efficient representations (encodings) of data, typically for dimensionality reduction.
- Components:
 - **Encoder:** Maps input to a lower-dimensional space.
 - **Decoder:** Reconstructs the input from the encoded representation.
- Variational Autoencoders (VAEs): A probabilistic version that models the data distribution.

7. Transformers

- **Purpose:** Primarily used for NLP tasks and are effective for processing sequences of data.
- Components:
 - Attention Mechanism: Allows the model to focus on different parts of the input sequence.
 - **Self-Attention:** Computes the representation of a word based on the other words in the sequence.
- Popular Architectures:

- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pre-trained Transformer)
- 8. Neural Network Training
 - **Backpropagation:** The algorithm used to compute the gradient of the loss function with respect to the weights.
 - Optimization Algorithms:
 - Stochastic Gradient Descent (SGD)
 - Adam (Adaptive Moment Estimation)
 - Regularization Techniques:
 - **Dropout:** Randomly dropping neurons during training to prevent overfitting.
 - **L2 Regularization:** Penalizing large weights to reduce overfitting.

9. Advanced Topics

- Meta-Learning: Learning how to learn, focusing on improving the learning process itself.
- Neural Architecture Search (NAS): Automated design of neural network architectures.

10. Applications

- Computer Vision: Image classification, object detection.
- Natural Language Processing: Machine translation, sentiment analysis.
- **Reinforcement Learning:** Training agents to make sequences of decisions.