

SNS COLLEGE OF ENGINEERING

Coimbatore-35
An Autonomous Institution

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS

19M0504 - INDUSTRIAL ELECTRONCIS

III YEAR V SEM

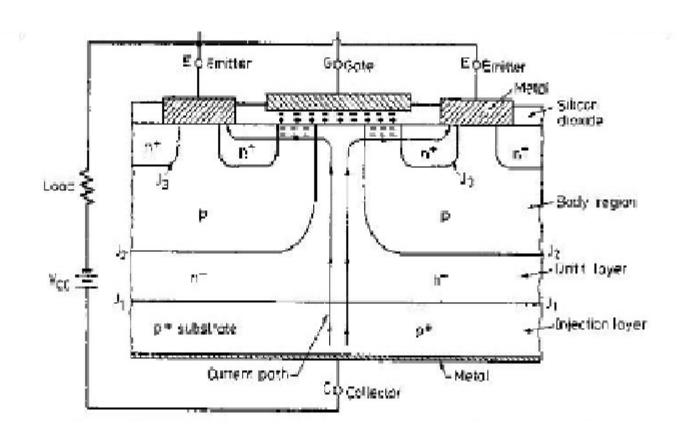
UNIT 1 – PHASE CONTROLLED CONVERTERS

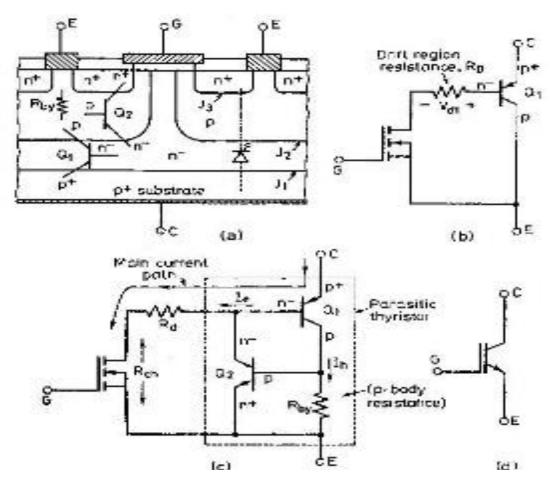
TOPIC - Construction and working of IGBT

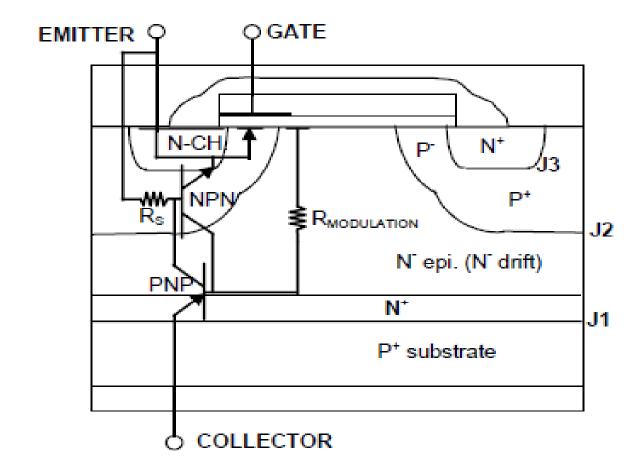
Ms.B.SAJITHA., M.E.,(Ph.D.,)
ASSISTANT PROFESSOR,
DEPARTMENT OF EEE,
SNSCE, Coimbatore.

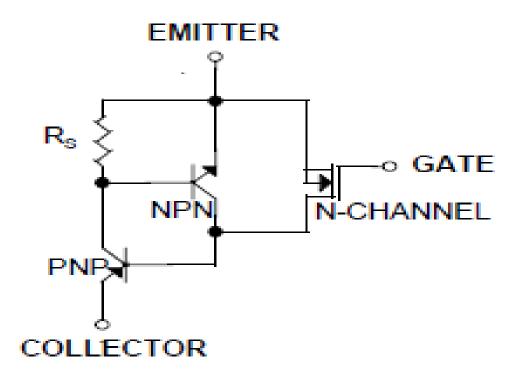

INSULATED GATE BIPOLAR TRANSISTO. (IGBT)

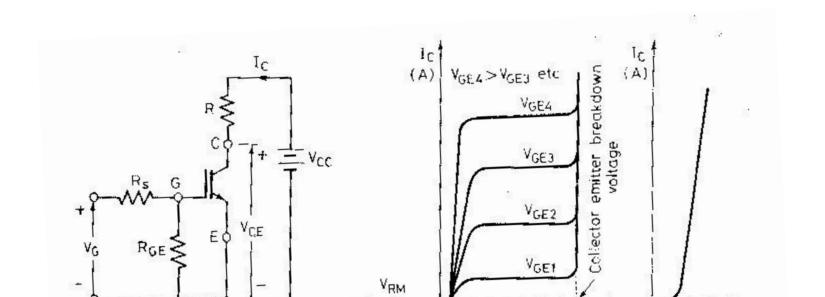
- COMBINES THE BEST QUALITIES OF BOTH BJT AND MOSFET
- HAS HIGH INPUT IMPEDANCE AS MOSFET AND HAS LOW ON-STATE POWER LOSS AS IN BJT
- OTHER NAMES
 - ✓ MOSIGT (METAL OXIDE INSULATED GATE TRANSISTOR),
 - ✓ **COMFET** (CONDUCTIVELY-MODULATED FIELD EFFECT TRANSISTOR),
 - ✓ GEMFET (GAIN MODULATED FIELD EFFECT TRANSISTOR),
 - ✓ IGT (INSULATED GATE TRANSISTOR)


BASIC STRUCTURE OF IGBT

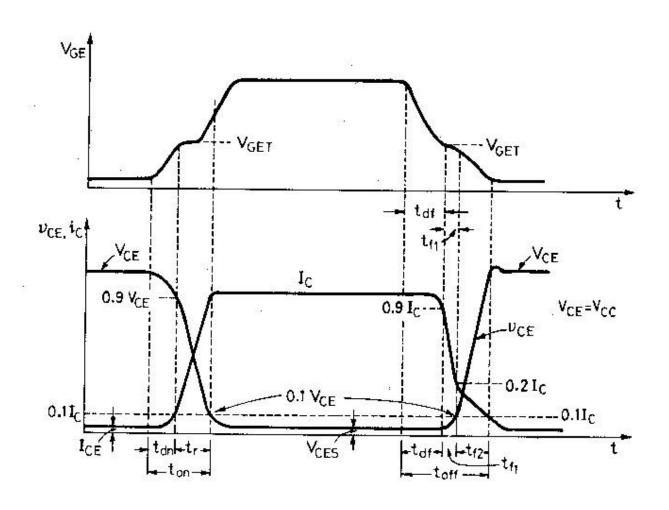

BASIC STRUCTURE OF IGBT


EQUIVALENT CIRCUIT OF IGBT


BASIC STRUCTURE OF IGBT


EQUIVALENT CIRCUIT OF IGBT

V-I AND TRANSFER CHARACTERISTIC! OF IGBT


VGE

VCE

SWITCHING CHARACTERISTICS OF IGBT

APPLICATIONS OF IGBT

- DC AND AC MOTOR DRIVES
- UPS SYSTEMS, POWER SUPPLIES
- DRIVES FOR SOLENOIDS, RELAYS AND CONTACTORS

COMPARISON OF IGBT WITH MOSFET

S.No	MOSFET	IGBT
1.	THREE TERMINALS ARE GATE, SOURCE AND DRAIN	THREE TERMINALS ARE GATE, EMITTER AND COLLECTOR
2.	HIGH INPUT IMPEDANCE	HIGH INPUT IMPEDANCE
3.	VOLTAGE CONTROLLED DEVICE	VOLTAGE CONTROLLED DEVICE
4.	RATINGS AVAILABLE UPTO 500V,140A	RATINGS AVAILABLE UPTO 1200V,500A
5.	OPERATING FREQUENCY IS UPTO I MHz	OPERATING FREQUENCY IS UPTO 50KHz
6.	WITH RISE IN TEMPERATURE, THE INCREASE IN ON-STATE RESISTANCE IN MOSFET IS MORE PRONOUNCED THAN IGBT. SO, ON-STATE VOLTAGE DROP AND LOSSES RISE RAPIDLY IN MOSFET THAN IN IGBT ITH RISE IN TEMPERATURE.	
7.	WITH RISE IN VOLTAGE, THE INCREMENT IN ON-STATE VOLTAGE DROP IS MORE DOMINANT IN MOSFET THAN IT IS IN IGBT. THIS MEANS IGBTs CAN BE DESIGNED FOR HIGHER VOLTAGE RATINGS THAN MOSFETS.	

Assessment

- Q1. What is the primary advantage of an IGBT over a MOSFET?
- •A) Higher switching speed
- •B) Lower switching losses
- •C) Ability to handle higher current
- •D) Lower gate drive power requirement
- **Answer:** C) Ability to handle higher current
- Q2. The IGBT is a combination of which two types of transistors?
- •A) Bipolar Junction Transistor (BJT) and Thyristor
- •B) Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and Bipolar Junction Transistor (BJT)
- C) Field-Effect Transistor (FET) and Thyristor
- •D) Junction Field-Effect Transistor (JFET) and BJT

Answer: B) Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and

- 1. https://www.electronics-tutorials.ws/power/single-phase-rectification.html
- 2. https://www.tutorialspoint.com/power_electronics/power_electronics_introduction.htm#:~:text=Power%20Electronics%20refers%20to%20the,efficiency%20and%20reliability%20is%20100%25

