

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 23EET206 CONTROL SYSTEMS AND INSTRUMENTATION

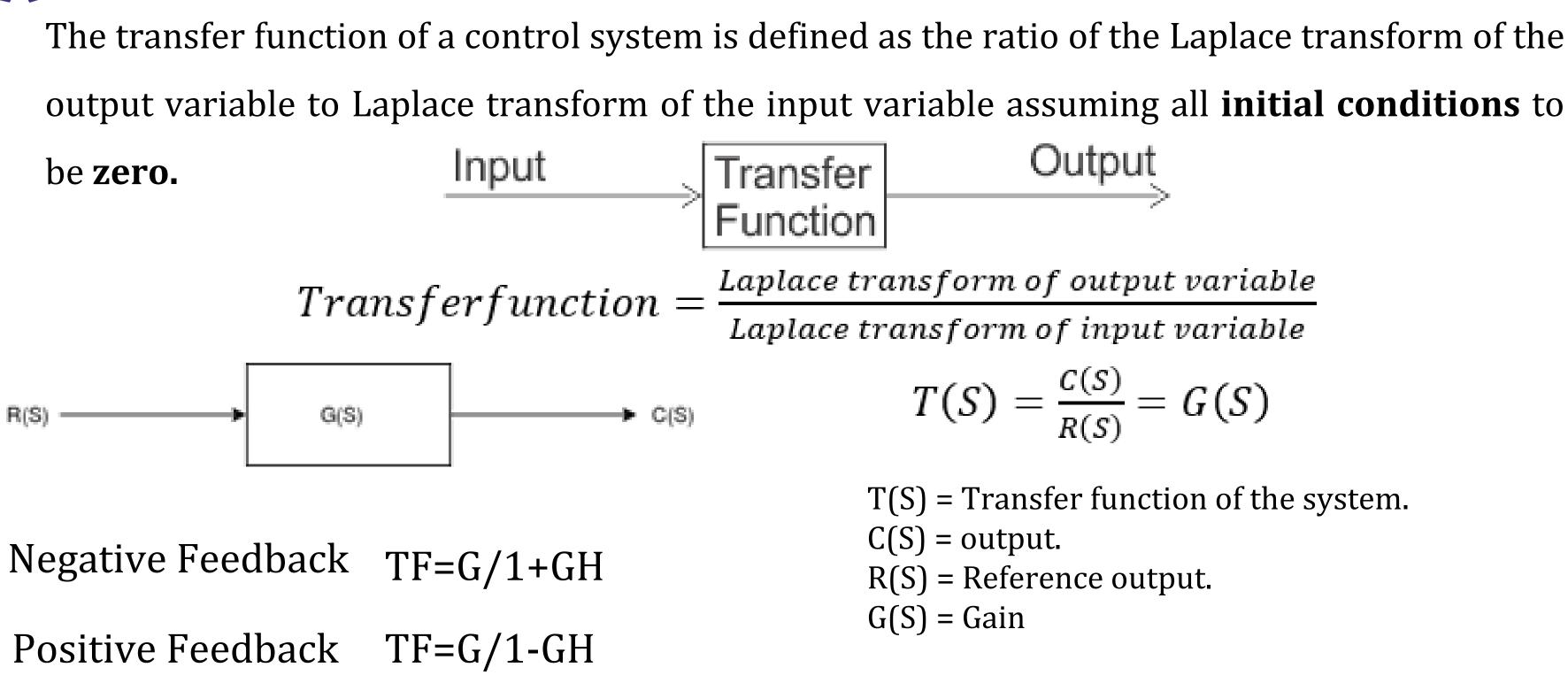
II YEAR ECE /III SEMESTER

Unit 1- Control System Modelling

Topic 2 : Transfer Function

Introduction to Control Systems/23EET206/Jebarani/EEE/SNSCE

Redesigning Common Mind & Business Towards Excellence



Build an Entrenreneurial Mindset Through Our Design Thinking FrameWou

TRANSFER FUNCTION

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking Fram

Output

Laplace transform of input variable C(C)

$$G(S) = \frac{G(S)}{R(S)} = G(S)$$

T(S) = Transfer function of the system. R(S) = Reference output.

METHODS OF OBTAINING A TRANSFER FUNCTION

Block Diagram Method: It is not convenient to derive a complete transfer function for a complex control system. Therefore the transfer function of each element of a control system is represented by a block diagram. Block diagram reduction techniques are applied to obtain the desired transfer function. **Signal Flow Graphs**: The modified form of a block diagram is a signal flow graph. Block diagrams visually outline a control system, while signal flow graphs provide a more compact representation.

POLES AND ZEROS

$$T(s) = \frac{Y(s)}{X(s)}$$

$$T(s) = \frac{a_0 s^m + a_1 s^{m-1} + \dots - \dots - a_m}{b_0 s^n + a_1 s^{n-1} + \dots - \dots - b_n}$$

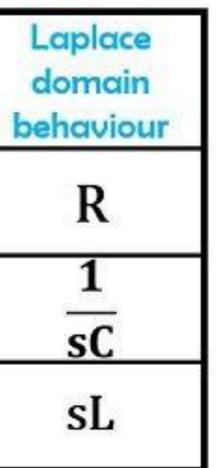
$$T(s) = \frac{K(s - s_a) (s - s_b) - - - (s_b)}{(s - s_1) (s - s_2) - - - (s_b)}$$

 $S_1, S_2, S_3, ..., S_n$ are the roots of Poles of the System $S_a, S_b, S_c, ..., S_m$ are the roots of Zeros of the System

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

 $(s - s_m)$ $(s - s_n)$


TRANSFER FUNCTION OF AN ELECTRIC CIRCUIT - EXAMPLE $e_i(t)$ i(t) R $e_o(t)$

Element	Time domain expression for voltage	Laplace domain expression for voltage	
Resistance R	i(t)*R	I(s) R	
Capacitance C	$\frac{1}{C}\int i(t)dt$	$\frac{1}{sC}I(s)$	
Inductance L	L $rac{d \ i(t)}{dt}$	sL I(s)	<

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

TRANSFER FUNCTION OF AN ELECTRIC CIRCUIT - EXAMPLE

Let $e_i(t)$ and $e_o(t)$ be the input applied and output of the circuit respectively.

On applying KVL in the above circuit,

$$e_{i}(t) = L \frac{di(t)}{dt} + \frac{1}{c} \int i(t)dt + i(t)R \quad -----$$

$$e_{o}(t) = i(t)R \quad ----- eq 2$$

$$E_{i}(s) = sL I(s) + \frac{1}{c} \frac{I(s)}{s} + R I(s) \quad ----- eq 3$$

$$E_{o}(s) = R I(s) \quad ----- eq 4$$

$$E_{i}(s) = I(s) [sL+R+\frac{1}{sC}] \quad ----- eq 5$$

$$I(s) = \frac{E_{o}(s)}{R}$$

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design

eq 1

TRANSFER FUNCTION OF AN ELECTRIC CIRCUIT - EXAMPLE

$$E_{i}(s) = \frac{E_{o}(s)}{R} [sL + R + \frac{1}{sC}]$$

$$E_{i}(s) = \frac{E_{o}(s)}{R} [\frac{s^{2}LC + sRC + 1}{sC}]$$

$$\frac{E_{i}(s)}{E_{o}(s)} = \frac{s^{2}LC + sRC + 1}{sRC}$$

$$\frac{E_{o}(s)}{E_{i}(s)} = \frac{sRC}{s^{2}LC + sRC + 1}$$

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

ADVANTAGES AND DISADVANTAGES OF TRANSFER FUNCTION

Advantages

- > The complex time-domain equations can be converted into simple algebraic form using Laplace transform.
- \succ It provides the mathematical model of the overall system along with each system component.
- \succ For a known transfer function, the output response is easy to determine for any reference input.
- \succ It helps to determine important parameters of the system like poles, zeros, etc.
- > The stability of the system can be easily analyzed using the transfer function.
- \succ It helps to relate output with input.

Disadvantages

- \succ It is not applicable to non-linear systems.
- \succ The initial conditions are not considered as the effects generated by them are neglected.

Redesigning Common Mind & Business Towar

References

- 1. Nagrath, J., Gopal, M., "Control System Engineering", New Age International Publishers, 7th Edition, 2021 (Unit I-III).
- 2. Benjamin.C.Kuo., "Automatic Control Systems", Prentice Hall of India, New Delhi, 9th Edition,2007 (Unit I-III).
- 3. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Addison, 12th Edition, 2010. (Unit I-III).
- 4. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India, New Delhi, 5th Edition, 2009(Unit I-III).

Thank You

