



### SNS COLLEGE OF ENGINEERING, COIMBATORE Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE & Affiliated to Anna University, Chennai

# TRANSFORMS & PARTIAL DIFFERENTIAL EQUATIONS

## <u>UNIT – I</u>

#### PART A

- 1. State the Dirichlet's conditions for existence of Fourier series.
- 2. Find the root mean square value of  $f(x) = x(\ell x)$  in  $0 \le x \le \ell$ .
- 3. Define root mean square value of a function
- 4. Find the sine series of function f(x) = 1 in  $0 < x < \pi$
- 5. Expand f(x) = 1 as a Half range sine series in  $(0, \pi)$
- 6. Find the half range sine series expansion of f(x) = 1 in (0, 2).
- 7. Find the value of the Fourier series of  $f(x) = \begin{cases} 0 & (-c,0) \\ 1 & (0,c) \\ 0 & \text{at the point of discontinuity at } x = 0. \end{cases}$

8. Find the value of  $b_n$  in the Fourier series expansion of  $f(x) = \begin{cases} x + \pi & (-\pi, 0) \\ -x + \pi & (0, \pi) \end{cases}$ 

- 9. Find the value of  $b_n$  in the Fourier series expansion of f(x) = x<sup>2</sup> in  $(-\pi, \pi)$
- 10. Find the Fourier series expansion of  $f(x) = e^x in (0, 2\pi)$

## PART - B

- 1. Find the Fourier series for a function  $f(x) = \begin{cases} l-x & in \ 0 < x < l \\ 0 & in \ l < x < 2l \\ in \ (0,2l) \end{cases}$
- 2. Find the Fourier series for  $f(x) = \frac{(\pi x)}{2}$  in (0,2 $\pi$ )
- 3. Find the Fourier series for  $f(x)=x^2$  in  $-\pi < x < \pi$ .
- 4. Find the Fourier series of  $f(x)=x^2$  in  $-\pi < x < \pi$ . Hence deduce the value of  $\sum_{n=1}^{\infty} r_n$
- 5. Find the Fourier series of f(x)=x in  $-\pi < x < \pi$
- 6. Find the Fourier series of f(x)=xsinx in  $-\pi < x < \pi$
- 7. Expand  $f(x)=x^2$  as the Fourier series in the interval  $(-\pi,\pi)$  and hence deduce that

$$1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$$

 $\sum_{n=1}^{\infty}$ 

8. Find the Fourier series in the function  $f(x)=x+x^2$  in  $(-\pi,\pi)$  and hence deduce the value

of 
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

9. Find the Fourier series expansion the following periodic function of period 4

$$f(\mathbf{x}) = \begin{cases} 2+x & \text{in } -2 \le x \le 0\\ 2-x & \text{in } 0 < x \le 2 \end{cases}$$
 Hence deduce that  $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ 

- 10. Find the Half range cosine series for f(x)=x in  $(0,\pi)$ .
- 11. Find the half range cosine series for  $f(x)=x(\pi-x)$  in  $(0,\pi)$
- 12. Find the Half range cosine series of  $f(x)=(\pi-x)^2$ ,  $0 < x < \pi$ . Hence find the sum of series

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots$$

- 13. Find the half range cosine series expansion of  $(x-1)^2$  in 0 < x < 1.
- 14. Obtain the Fourier cosine series expansion of f(x) = x in 0 < x < 4. Hence deduce the value of

$$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty$$

15. Find the Fourier series of y=f(x) up to third harmonic which is defined by the following data in  $(0,2\pi)$ 

| х    | 0 | π/3 | 2π/3 | π   | 4 π/3 | 5 π/3 | 2 π |
|------|---|-----|------|-----|-------|-------|-----|
| f(x) | 1 | 1.4 | 1.9  | 1.7 | 1.5   | 1.2   | 1   |

16. Find the Fourier cosine series up to third harmonic to represent the function given by the following data:

| x | 0 | 1  | 2  | 3  | 4  | 5  |
|---|---|----|----|----|----|----|
| У | 9 | 18 | 24 | 28 | 26 | 20 |

17. Determine the first two harmonics of Fourier series for the following data.

| х    | 0    | T/6  | T/3  | T/2  | 2T/3  | 5T/6  | Т    |
|------|------|------|------|------|-------|-------|------|
| f(x) | 1.98 | 1.30 | 1.05 | 1.30 | -0.88 | -0.25 | 1.98 |

 $y_{n+2} + 2y_{n+1} + y_n = n$ , given that  $y_0 = 0, y_1 = 0$