

TOPIC: 2 - TAUTOLOGY & LOGICAL EQUIVALENCE

Tautology

A statement which is true always irrespective of the truth values of the individual variables is called a tautology.

Example PV-P is a Tautology.

Contradiction

A statement which is always false is called a contradiction.

Example PA -P is a contradiction.

contiguncy

A statement which is neither Tautology nor contradiction is called contiguncy.

1) show that @ AV(Pn-Q) v (¬Pn-Q) is a tautology.

P	a	¬P	-a	PATQ	av(PA-a)	¬PA-a	5
T	Т	F	F	F	Т	F	r
T	F	F	Т	Т	_5 T	F	Т
F	T	Ţ.	F	F	T	F	T
F	F	Т	T	F	F	т \	Т

.. Given statement is Tautology.

3 Show that $(P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R)$ is a tautology.

P	a	R	$P \rightarrow Q$	$Q \rightarrow R$	$(P\rightarrow Q) \wedge (Q\rightarrow R)$	P→R	S
_	T	Т	T	T	Т	T	Т
T	\ _T	F	T	F	F /	F	Т
T T	F	Т	F	т /	F	Т	T
T	F	F	F	T	F	F	Т
F	T	T	T	Т	Т	T	T
F	T	F	Т	F	F	T /	T
F	F	T	T /	T	T.	T	Τ
F	F	F	T	T	т]	T	T

· Prove ((pvq) ~ (¬p ~ (¬q v ¬r))) v (¬p ~ ¬q)
v (¬p ~ ¬r) is a tautology.

þ	9	7	(1) (1)	79 (2)	(3)	p v q (+)	79V7Y (5)	79 V 77 (6)	(1) 18 8 1 1 (V	(8)	(P) (P)	(4)	(1)	(P) V (10)
	_	-	-	F	F	T	F	F	T	T	F	T	(w)	-
T	1	1	F	F	T	Т	Т	F	T	T	F	T	F	T
T	T	F	F	T	F	Т	T	F	T	T	F	T	F	T
T	F	F	F	T	T	T	T	F	T	T	F	T	F	T
F	T	Т	Т	F	F	Т	F	F	T	T	F	T	F	T
	T	F	T	F	T	T	Ι Τ	FT	F	F	F	F	T	T
F	F	Т	T	Т	F	F	T	T	F	F	Т	Т	F	T
F	F	F	T	T	T	F	Т	Т	F	F	T	7		T

Equivalence

Two statements P and Q are equivalent iff $P \leftrightarrow Q$ or $P \rightleftarrows Q$ is a tautology. It is denoted by the symbol $P \Leftrightarrow Q$ which is read as "P is equivalent to Q".

I dempotent Laws	$P \land P \Leftrightarrow P$ $P \lor P \Leftrightarrow P$
Associative Laws	$\begin{array}{c} (p \land q) \land Y \iff p \land (q \land Y) \\ (p \lor q) \lor Y \iff p \lor (q \lor Y) \end{array}$
Commutative Laws	PNA SANP
De Morgan's Laws	$\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$ $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$
Distributive Laws	$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$
Complement Laws	$P \land \neg P \Leftrightarrow F$ $P \lor \neg P \Leftrightarrow T$
Absorption Laws	$P \vee (P \wedge q) \Leftrightarrow P$ $P \wedge (P \vee q) \Leftrightarrow P$
contrapositive Law	$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$
Conditional as	p→q ⇔ ¬pvq
Biconditional as	$p \leftrightarrow q \iff (p \rightarrow q) \land (q \rightarrow p)$

Tautological Implication

A statement P is said to be tautologically imply a statement Q iff $P \rightarrow Q$ is a tautology. We shall denote this idea by A^{\pm}

Prove that $(P \rightarrow Q) \land (R \rightarrow Q) \Rightarrow (PVR) \rightarrow Q$ T.S.T $(P \rightarrow Q) \land (R \rightarrow Q) \rightarrow ((PVR) \rightarrow Q)$ is a tautology. $(P \rightarrow Q) \land (R \rightarrow Q) \rightarrow ((PVR) \rightarrow Q)$ $\Leftrightarrow (P \rightarrow Q) \land (\neg R \lor Q) \rightarrow (\neg (P \lor R) \lor Q)$ $\Rightarrow \neg P \lor Q$ $\Leftrightarrow (\neg P \land \neg R) \lor Q) \Rightarrow (\neg (P \lor R) \lor Q)$ $\Rightarrow (\neg (P \lor R) \lor Q)$ Demorgan's law $\Leftrightarrow (\neg (P \lor R) \lor Q) \rightarrow (\neg (P \lor R) \lor Q)$ Demorgan's law $\Leftrightarrow \neg (\neg (P \lor R) \lor Q) \lor (\neg (P \lor R) \lor Q)$ $\Rightarrow \neg P \lor Q$ $\Leftrightarrow \neg P \lor P \Leftrightarrow T$

