

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore – 641 107

### **An Autonomous Institution**

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

### **DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING**

### **COURSE NAME : 23EET206 CONTROL SYSTEMS AND INSTRUMENTATION**

### II YEAR ECE /III SEMESTER

**Unit 1- Control System Modelling** 

Topic 5 : Modeling of Physical Systems – Rotational System (Mechanical)

**Redesigning Common Mind & Business Towards Excellence** 







Build an Entrenreneurial Mindset Through Our Design Thinking FrameWou



# **MODELING OF PHYSICAL SYSTEMS**

The control systems can be represented with a set of mathematical equations known as mathematical model.

- Mathematical Models are obtained by using
  - •Differential equation model
  - •Transfer function model
  - •State space model

- - system means finding the output when we know the input and mathematical model.
- Design of control system means finding the mathematical model when we know the input and the output.

umon Mind & Rusiness Towards Excellence



# These models are useful for analysis and design of control systems. Analysis of control



# MATHEMATICAL MODEL

- A mathematicalmodel is a set of equations (usually differential equations) that represents the dynamics of systems.
- In practice, the complexity of the system assumptions in the determination model.
- How do we obtain the equations?
  - Physical law of the process
  - **Examples:** 
    - Mechanical system (Newton's laws)
    - Electrical system (Kirchhoff's laws)

Redesigning Common Mind & Business Towards Excellence



### requires some



### **BASIC TYPES OF MECHANICAL SYSTEMS**

□ Translational System

□ Rotational System





Redesigning Common Mind & Business Towards Excellence



Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork



>These systems mainly consist of three basic elements. Those are **moment of inertia**, torsional spring and dashpot.

### > Moment of Inertia

In translational mechanical system, mass stores kinetic energy Similarly, in rotational mechanical system, moment of inertia stores **kinetic energy**.



Redesigning Common Mind & Business Towards Excellence





$$T_{j} \alpha \alpha \implies J \alpha = T_{j} = J \frac{d^{2} \theta}{dt^{2}}$$
$$\implies T = T_{j} = J \frac{d^{2} \theta}{dt^{2}}$$

≻Where,

- **T** is the applied torque
- $T_i$  is the opposing torque due to moment of inertia
- J is moment of inertia
- $\alpha$  is angular acceleration
- $\boldsymbol{\theta}$  is angular displacement

Redesigning Common Mind & Business Towards Excellence



Build an Entrepreneurial Mindset Through Our Design Thinking FrameWo



### Torsional Spring

In translation mechanical system, spring stores potential energy. In rotational system, torsional spring stores energy in the form of potential energy.

$$T_k \alpha \theta \implies T_k = K \theta$$
$$\implies T = T_k = K \theta$$





≻Where,

- **T** is the applied torque
- $\mathbf{T}_{\mathbf{k}}$  is the opposing torque due to elasticity of torsional spring
- **K** is the torsional spring constant
- **\Theta** is angular displacement

Redesigning Common Mind & Business Towards Excellence





Build an Entrepreneurial Mindset Through Our Design Thinking FrameV





### > Dashpot

If a torque is applied on dashpot **B**, then it is opposed by an opposing

torque due to the **rotational friction** of the dashpot.

$$T_{b}\alpha\omega \implies T_{b} = B\omega = B\frac{d\theta}{dt}$$
$$\implies T = T_{b} = B\frac{d\theta}{dt}$$

≻Where,

- **T**<sub>b</sub> is the opposing torque due to the rotational friction of the dashpot
- **B** is the rotational friction coefficient
- $\boldsymbol{\omega}$  is the angular velocity
- $\boldsymbol{\theta}$  is the angular displacement

Redesigning Common Mind & Business Towards Excellence







## References

- 1. Nagrath, J., Gopal, M., "Control System Engineering", New Age International Publishers, 7<sup>th</sup> Edition, 2021 (Unit I-III).
- 2. Benjamin.C.Kuo., "Automatic Control Systems", Prentice Hall of India, New Delhi, 9<sup>th</sup> Edition,2007 (Unit I-III).
- 3. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Addison, 12<sup>th</sup> Edition, 2010. (Unit I-III).
- 4. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall of India, New Delhi, 5<sup>th</sup> Edition, 2009(Unit I-III).

# **Thank You**

