

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19EC505-VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 1 -MOS TRANSISTOR PRINCIPLE

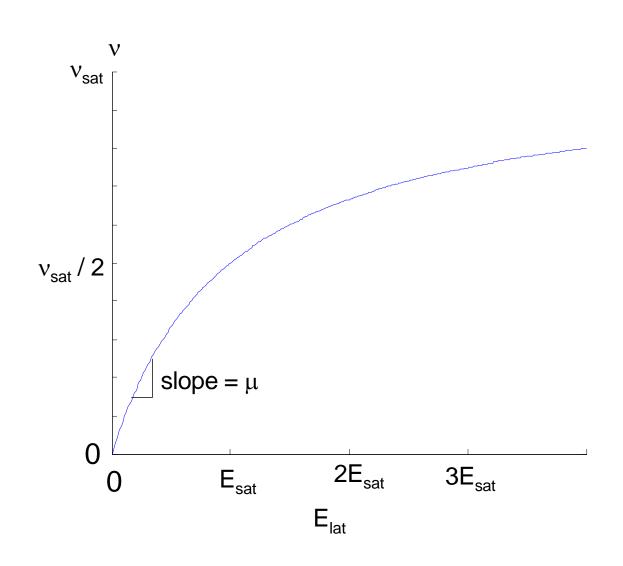
MOS- NON IDEAL IV CHARACTERISTICS

OUTLINE

- TRANSISTOR I-V REVIEW
- NONIDEAL TRANSISTOR BEHAVIOR
 - **-VELOCITY SATURATION**
 - -CHANNEL LENGTH MODULATION
 - -BODY EFFECT
 - **–LEAKAGE**
 - -TEMPERATURE SENSITIVITY
 - ACTIVITY
- PROCESS AND ENVIRONMENTAL VARIATIONS
 - -PROCESS CORNERS
- ASSESSMENT
- •SUMMARY

IDEAL TRANSISTOR I-V

Shockley 1st order transistor models


$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t\right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

VELOCITY SATURATION

- We assumed carrier velocity is proportional to E-field
 - $-v = mE_{lat} = mV_{ds}/L$
- At high fields, this ceases to be true
 - -Carriers scatter off atoms
 - –Velocity reaches v_{sat}
 - Electrons: $6-10 \times 10^6 \text{ cm/s}$
 - Holes: 4-8 x 10⁶ cm/s
 - -Better model

VELOCITY SATURATION I-VEFFECTS

Ideal transistor ON current increases with V_{DD}^2

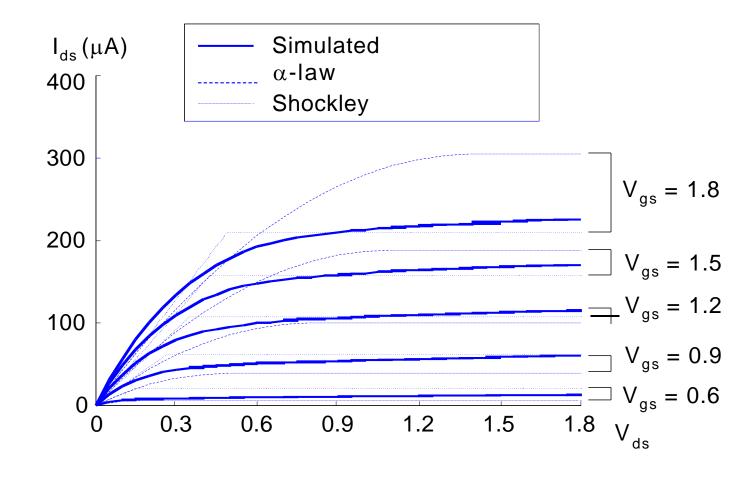
$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_{t})^{2}}{2} = \frac{\beta}{2} (V_{gs} - V_{t})^{2}$$

• Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{ox}W \left(V_{gs} - V_{t}\right)v_{max}$$

- Real transistors are partially velocity saturated
 - –Approximate with a-power law model – $I_{ds} \propto V_{DD_a}$
 - -1 < a < 2 determined empirically

α-POWER MODEL

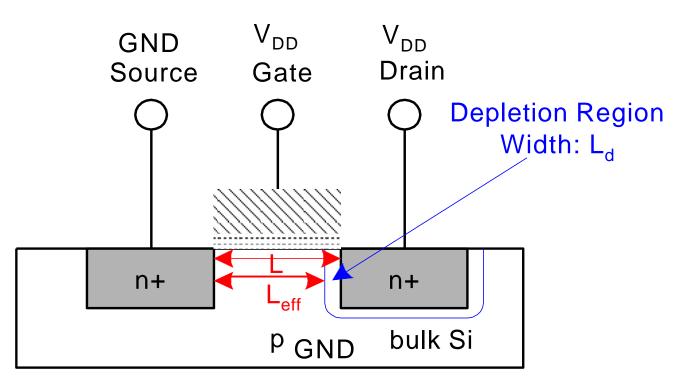


$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$$

$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

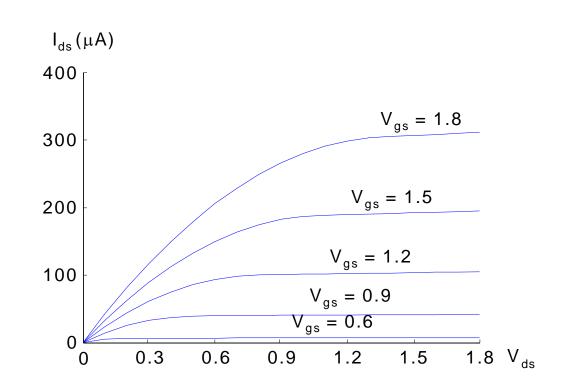
$$V_{dsat} = P_{v} \left(V_{gs} - V_{t} \right)^{\alpha/2}$$


CHANNEL LENGTH MODULATION

- Reverse-biased p-n junctions form a depletion region
 - -Region between n and p with no carriers
 - -Width of depletion L_d region grows with reverse bias

$$-L_{eff} = L - L_{d}$$

- Shorter L_{eff} gives more current
 - $-I_{ds}$ increases with V_{ds}
 - –Even in saturation



CHAN.LENGTH MOD I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

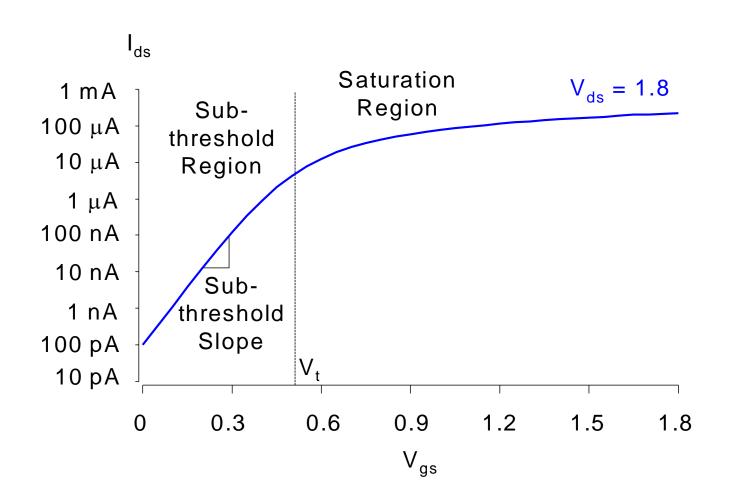
- λ = channel length modulation coefficient
 - not feature size
 - •Empirically fit to I-V characteristics

BODY EFFECT & BODY EFFECT MODEL

- V_t: gate voltage necessary to invert channel
- Increases if source voltage increases because source is connected to the channel
- Increase in V_t with V_s is called the body effect

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

- $f_s = surface\ potential\ at\ threshold$ $\phi_s = 2v_T \ln \frac{N_A}{n_s}$
 - -Depends on doping level N_A
 - -intrinsic carrier concentration n_i
- γ = body effect coefficient


$$\gamma = \frac{t_{\text{ox}}}{\varepsilon_{\text{ox}}} \sqrt{2q\varepsilon_{\text{si}}N_A} = \frac{\sqrt{2q\varepsilon_{\text{si}}N_A}}{C_{\text{ox}}}$$

OFF TRANSISTOR BEHAVIOR

- What about current in cutoff?
- Simulated results
- What differs?
 - -Current doesn't go to 0 in cutoff

LEAKAGE SOURCES

- Subthreshold conduction
 - -Transistors can't abruptly turn ON or OFF
- Junction leakage
 - -Reverse-biased PN junction diode current
- Gate leakage
 - -Tunneling through ultrathin gate dielectric
- Subthreshold leakage is the biggest source in modern transistors

ACTIVITY

Quick! Count the number of times that the letter F appears in the following sentence:

"Finished files are the result of years of scientific study combined with the experience of years."

SUBTHRESHOLD LEAKAGE

Subthreshold leakage exponential with V_{gs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv}} \left(\frac{-V_{ds}}{1 - e^{v_T}} \right)$$

$$I_{ds0} = \beta v_T^2 e^{1.8}$$

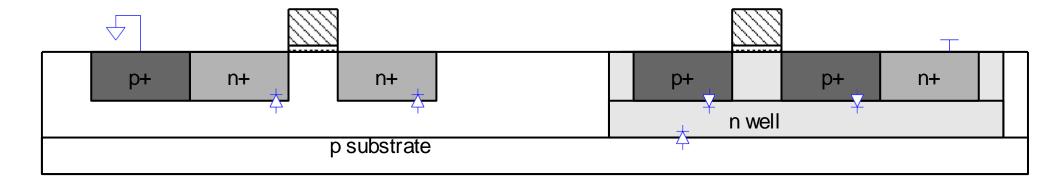
• n is process dependent, typically 1.4-1.5

DRAIN-INDUCED BARRIER LOWERING DIBL

- Drain-Induced Barrier Lowering
 - -Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

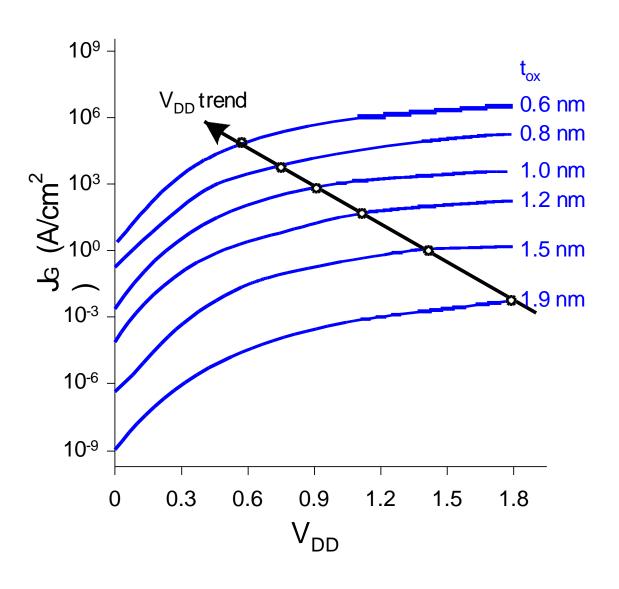
-High drain voltage causes sub threshold leakage to <u>increase</u>.


JUNCTION LEAKAGE

Reverse-biased p-n junctions have some leakage

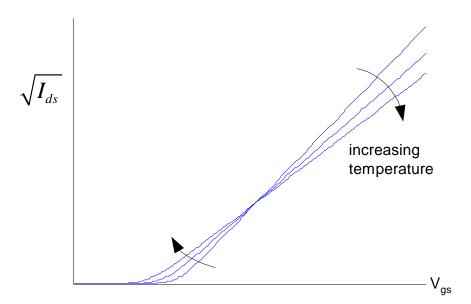
$$I_D = I_S \left(e^{\frac{V_P}{v}} - 1 \right)$$

- I_s depends on doping levels
 - –And area and perimeter of diffusion regions
 - -Typically < 1 fA/mm²



GATE LEAKAGE

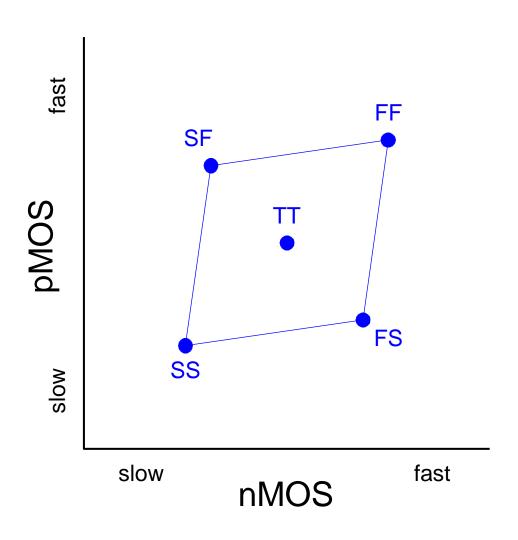
- Carriers may tunnel thorough very thin gate oxides
- Predicted tunneling current
- Negligible for older processes
- May soon be critically important



TEMPERATURE SENSITIVITY

- Increasing temperature
 - –Reduces mobility
 - -Reduces V_t
- I_{ON} decreases with temperature
- I_{OFF} increases with temperature

SO WHAT?


- So what if transistors are not ideal?
 - -They still behave like switches.
- But these effects matter for...
 - -Supply voltage choice
 - –Logical effort
 - –Quiescent power consumption
 - –Pass transistors
 - -Temperature of operation

PARAMETER VARIATION

- Transistors have uncertainty in parameters
 - -Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
 - -Vary around typical (T) values
- Fast (F)
 - -L_{eff}: short
 - $-V_t$: low
 - $-t_{ox}$: thin
- Slow (S): opposite
- Not all parameters are independent for nMOS and pMOS

ENVIRONMENTAL VARIATION

• V_{DD} and T also vary in time and space

• Fast:

-V_{DD}: high

-T: low

Corner	Voltage	Temperature
F	1.98	0 C
T	1.8	70 C
S	1.62	125 C

PROCESS CORNERS

- Process corners describe worst case variations
 - -If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - -nMOS speed
 - -pMOS speed
 - -Voltage
 - -Temperature

IMPORTANT CORNERS

Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthrehold	F	F	F	S
leakage				
Pseudo-nMOS	S	F	?	?

ASSESSMENT

- 1.Write the CHANNEL LENGTH MODULATION equation
- 2.Write the body effect derivation with its factors
- 3.In parameter Variation
 - Fast (F)

4.

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	?	?	?	?
Power	?	?	?	?
Subthrehold	?	?	?	?
leakage				
Pseudo-nMOS	?	?	?	?

THANK YOU