
 

 

 
 

12.3 Graph Traversals 

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way 
to traverse them, trees can be traversed in different ways. Following are the generally used ways for 
traversing trees. 
 

12.3.1 In-order 

Algorithm Inorder(tree) 
   1. Traverse the left subtree, i.e., call Inorder(left subtree) 
   2. Visit the root. 
   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 
 
Uses of Inorder 
In case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get 
nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder traversal s 
reversed can be used. 
Example-1: Inorder traversal for the below-given tree is 4 2 5 1 3. 



 

 

 
Example-2: Consider input as given below: 
Input: 
       1 
     /  \ 
    3    2 
Output: 3 1 2 
 

12.3.2 Pre-order 

Algorithm Preorder(tree) 
   1. Visit the root. 
   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 
   3. Traverse the right subtree, i.e., call Preorder(right-subtree)  
Uses of Preorder 

 Preorder traversal is used to create a copy of the tree.  

 Preorder traversal is also used to get prefix expression on of an expression tree. 

Example-1: Preorder traversal for the below given figure is 1 2 4 5 3. 

 
Example-2: Consider Input as given below: 
Input: 
        1       
      /           
    4     
  /    \    
4       2 
Output: 1 4 4 2 

12.3.3 Post-order 

Algorithm Postorder(tree) 

   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 

   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 



 

 

   3. Visit the root. 

Uses of Postorder 

 Postorder traversal is used to delete the tree.  

 Postorder traversal is also useful to get the postfix expression of an expression tree. 

Example-1: Postorder traversal for the below given figure is 4 5 2 3 1. 

 
Example-2: Consider input as given below:  

Input: 

        19 

     /     \ 

    10      8 

  /    \ 

 11    13 

Output: 11 13 10 8 19 

12.4 Summary 

In this chapter, we have seen what graphs are, what are the various terminologies used in graphs. 
We have also seen the graph operations like Breadth First Search (BFS) & Depth First Search (DFS). 
We have seen the carious graph traversal methods like Inorder, Preorder and Postorder. 

12.5 Review Your Learning 

 Can you explain what are graphs?  

 Can you explain what is BFS and DFS? 

 Are you able to write the graph nodes sequence using Inorder, Preorderand 

:ostorder traversal methods?  

 Can you relate day to day rea problems using graphical notations? 

12.6 Questions 

1. Draw a directed graph with five vertices and seven edges. Exactly one of the edges 

should be a loop, and do not have any multiple edges. 

2. Draw an undirected graph with five edges and four vertices. The vertices should be 

called v1, v2, v3 and v4--and there must be a path of length three from v1 to v4. 

Draw a squiggly line along this path from v1 to v4. 

3. Explain Inorder, Preorder and Postorder traversal methods. Writeh sequence for 

following given graph. 



 

 

 
4. Explain BFS and DFA Algorithms with examples. 

5. Draw the directed graph that corresponds to this adjacency matrix: 

 0 1 2 3 

0 True False True False 

1 True False False False 

2 False False False True 

3 True False True False 

 

12.7 Further Reading 

 https://lpuguidecom.files.wordpress.com/2017/04/fundamentals-of-data-

structures-ellis-horowitz-sartaj-sahni.pdf 

 https://www.guru99.com/data-structure-algorithms-books.html 

 https://edutechlearners.com/data-structures-with-c-by-schaum-series-pdf/ 
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13.0 Objectives 

5. Identify Minimum Spanning Tree in a given graph 

6. Explain Kruskal’s Algorithm 

7. Explain Prim’s Algorithm 

8. Analyse working with Kruskal’s Algorithm, Prim’s Algorithm 

9. Explain Greedy Algorithms. 

13.1 Introduction 

A graph is a common data structure that consists of a finite set of nodes (or vertices) and a set of 

edges connecting them. 

A pair (x,y) is referred to as an edge, which communicates that the x vertex connects to the y vertex. 

In the examples below, circles represent vertices, while lines represent edges. 



 

 

 

Graphs are used to solve real-life problems that involve representation of the problem space as a 

network. Examples of networks include telephone networks, circuit networks, social networks (like 

LinkedIn, Facebook etc.). 

For example, a single user in Facebook can be represented as a node (vertex) while their connection 

with others can be represented as an edge between nodes. 

Each node can be a structure that contains information like user’s id, name, gender, etc. 

Types of graphs: 

A. Undirected Graph: 

In an undirected graph, nodes are connected by edges that are all bidirectional. For example, if an 

edge connects node 1 and 2, we can traverse from node 1 to node 2, and from node 2 to 1. 

 

B. Directed Graph 

In a directed graph, nodes are connected by directed edges – they only go in one direction. For 

example, if an edge connects node 1 and 2, but the arrowhead points towards 2, we can only 

traverse from node 1 to node 2 – not in the opposite direction. 

Types of Graph Representations: 

A. Adjacency List 

To create an Adjacency list, an array of lists is used. The size of the array is equal to the number of 

nodes. 

A single index, array[i] represents the list of nodes adjacent to the ith node. 



 

 

 

 

B. Adjacency Matrix: 

An Adjacency Matrix is a 2D array of size V x V where V is the number of nodes in a graph. A slot 

matrix[i][j] = 1 indicates that there is an edge from node i to node j. 

 

13.2 Minimum Spanning Tree 

13.2.1 Spanning Tree 

A spanning tree is a subset of Graph G, which has all the vertices covered with 

minimum possible number of edges. Hence, a spanning tree does not have cycles and 

it cannot be disconnected. 



 

 

By this definition, we can draw a conclusion that every connected and undirected 

Graph G has at least one spanning tree. A disconnected graph does not have any 

spanning tree, as it cannot be spanned to all its vertices. 

Given an undirected and connected graph G=(V, E), a spanning tree of the graph G is 

a tree that spans G (that is, it includes every vertex of G) and is a subgraph 

of G (every edge in the tree belongs to G).  

Following figure shows the original undirected graph and its various possible 

spanning trees.  

 

We found three spanning trees off one complete graph. A complete undirected graph 

can have maximum nn-2 number of spanning trees, where n is the number of nodes. In 

the above addressed example, n is 3, hence 33−2 = 3 spanning trees are possible. 

General Properties of Spanning Tree 

As one graph can have more than one spanning tree. Following are a few properties 

of the spanning tree connected to graph G − 

1. A connected graph G can have more than one spanning tree. 



 

 

2. All possible spanning trees of graph G, have the same number of edges and 

vertices. 

3. The spanning tree does not have any cycle (loops). 

4. Removing one edge from the spanning tree will make the graph disconnected, 

i.e. the spanning tree is minimally connected. 

5. Adding one edge to the spanning tree will create a circuit or loop, i.e. the 

spanning tree is maximally acyclic. 

 

Mathematical Properties of Spanning Tree 

1. Spanning tree has n-1 edges, where n is the 

number of nodes (vertices). 

2. From a complete graph, by removing 

maximum e - n + 1 edges, we can construct a spanning tree. 

3. A complete graph can have maximum nn-2 

number of spanning trees. 

4. Thus, we can conclude that spanning trees are a 

subset of connected Graph G and disconnected graphs do not have spanning 

tree. 

Application of Spanning Tree 

Spanning tree is basically used to find a minimum path to connect all nodes in a 

graph. Common application of spanning trees are − 

 Civil Network Planning 

 Computer Network Routing Protocol 

 Cluster Analysis  

 



 

 

13.2.2 Minimum Spanning Tree 

The cost of the spanning tree is the sum of the weights of all the edges in the tree. 

There can be many spanning trees. Minimum spanning tree is the spanning tree 

where the cost is minimum among all the spanning trees. There also can be many 

minimum spanning trees. 

Minimum spanning tree has direct application in the design of networks. It is used in 

algorithms approximating the travelling salesman problem, multi-terminal minimum 

cut problem and minimum cost weighted perfect matching. Other practical 

applications are: 

1. Cluster Analysis 

2. Handwriting recognition 

3. Image segmentation 

 

There are two famous algorithms for finding the Minimum Spanning Tree: 

1. Kruskal’s Algorithm 

2. Prim’s Algorithm 

These both algorithms are Greedy Algorithms. 

 



 

 

13.3 Graph Algorithms 

13.3.1 Kruskal’s Algorithm 

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing spanning 

tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which has least 

weight and add it to the growing spanning tree. 

Algorithm Steps: 

1. Sort the graph edges with respect to their weights. 

2. Start adding edges to the MST from the edge with the smallest weight until the edge of the 

largest weight. 

3. Only add edges which doesn't form a cycle , edges which connect only disconnected 

components. 

So now the question is how to check if 2 vertices are connected or not ? 

This could be done using DFS which starts from the first vertex, then check if the second vertex is 

visited or not. But DFS will make time complexity large as it has an order of O(V+E) where V is the 

number of vertices, E is the number of edges. So the best solution is "Disjoint Sets". 

 

DisjointSets: 

Disjoint sets are sets whose intersection is the empty set so it means that they don't have any 

element in common. 

Consider following example: 



 

 

 

In Kruskal’s algorithm, at each iteration we will select the edge with the lowest weight. So, we will 

start with the lowest weighted edge first i.e., the edges with weight 1. After that we will select the 

second lowest weighted edge i.e., edge with weight 2. Notice these two edges are totally disjoint. 

Now, the next edge will be the third lowest weighted edge i.e., edge with weight 3, which connects 

the two disjoint pieces of the graph. Now, we are not allowed to pick the edge with weight 4, that 

will create a cycle and we can’t have any cycles. So we will select the fifth lowest weighted edge i.e., 

edge with weight 5. Now the other two edges will create cycles so we will ignore them. In the end, 

we end up with a minimum spanning tree with total cost 11 ( = 1 + 2 + 3 + 5). 

Program: 

#include <iostream> 

#include <vector> 

#include <utility> 

#include <algorithm> 

 



 

 

using namespace std; 

const int MAX = 1e4 + 5; 

int id[MAX], nodes, edges; 

pair <long long, pair<int, int>> p[MAX]; 

 

void initialize() 

{ 

for(int i = 0;i < MAX;++i) 

        id[i] = i; 

} 

 

int root(int x) 

{ 

    while(id[x] != x) 

    { 

        id[x] = id[id[x]]; 

        x = id[x]; 

    } 

    return x; 

} 

 

void union1(int x, int y) 

{ 

    int p = root(x); 

    int q = root(y); 

    id[p] = id[q]; 



 

 

} 

 

long longkruskal(pair<long long, pair<int, int>> p[]) 

{ 

    int x, y; 

    long long cost, minimumCost = 0; 

for(int i = 0;i < edges;++i) 

    { 

        // Selecting edges one by one in increasing order from the beginning 

        x = p[i].second.first; 

        y = p[i].second.second; 

        cost = p[i].first; 

        // Check if the selected edge is creating a cycle or not 

        if(root(x) != root(y)) 

        { 

minimumCost += cost; 

            union1(x, y); 

        }     

    } 

    return minimumCost; 

} 

 

int main() 

{ 

    int x, y; 

    long long weight, cost, minimumCost; 



 

 

initialize(); 

cin>> nodes >>edges; 

for(int i = 0;i < edges;++i) 

    { 

cin>> x >> y >>weight; 

        p[i] = make_pair(weight, make_pair(x, y)); 

    } 

    // Sort the edges in the ascending order 

sort(p, p + edges); 

minimumCost = kruskal(p); 

cout<<minimumCost<<endl; 

    return 0; 

} 

TimeComplexity: 

Time Complexity: 

In Kruskal’s algorithm, most time consuming operation is sorting because the total complexity of the 

Disjoint-Set operations will be O(E log V), which is the overall Time Complexity of the algorithm. 

 

13.3.2 Prim’s Algorithm 

Prim’s Algorithm also use Greedy approach to find the minimum spanning tree. In Prim’s Algorithm 

we grow the spanning tree from a starting position. Unlike an edge in Kruskal's, we add vertex to the 

growing spanning tree in Prim's. 

Algorithm Steps: 

1. Maintain two disjoint sets of vertices. One containing vertices that are in the 

growing spanning tree and other that are not in the growing spanning tree. 

2. Select the cheapest vertex that is connected to the growing spanning tree and is not 

in the growing spanning tree and add it into the growing spanning tree. This can be 



 

 

done using Priority Queues. Insert the vertices, that are connected to growing 

spanning tree, into the Priority Queue. 

3. Check for cycles. To do that, mark the nodes which have been already selected and 

insert only those nodes in the Priority Queue that are not marked. 

Consider the example below: 

 

In Prim’s Algorithm, we will start with an arbitrary node (it doesn’t matter which one) and mark it. In 

each iteration we will mark a new vertex that is adjacent to the one that we have already marked. As 

a greedy algorithm, Prim’s algorithm will select the cheapest edge and mark the vertex. So we will 

simply choose the edge with weight 1. In the next iteration we have three options, edges with weight 

2, 3 and 4. So, we will select the edge with weight 2 and mark the vertex. Now again we have three 

options, edges with weight 3, 4 and 5. But we can’t choose edge with weight 3 as it is creating a cycle. 

So we will select the edge with weight 4 and we end up with the minimum spanning tree of total cost 

7 ( = 1 + 2 +4). 

Program: 

#include <iostream> 

#include <vector> 

#include <queue> 



 

 

#include <functional> 

#include <utility> 

 

using namespace std; 

const int MAX = 1e4 + 5; 

typedef pair<long long, int>PII; 

bool marked[MAX]; 

vector <PII>adj[MAX]; 

 

long longprim(int x) 

{ 

priority_queue<PII, vector<PII>, greater<PII>>Q; 

    int y; 

    long longminimumCost = 0; 

    PII p; 

Q.push(make_pair(0, x)); 

    while(!Q.empty()) 

    { 

        // Select the edge with minimum weight 

        p = Q.top(); 

Q.pop(); 

        x = p.second; 

        // Checking for cycle 

        if(marked[x] == true) 

continue; 

minimumCost += p.first; 



 

 

        marked[x] = true; 

for(int i = 0;i <adj[x].size();++i) 

        { 

            y = adj[x][i].second; 

            if(marked[y] == false) 

Q.push(adj[x][i]); 

        } 

    } 

    return minimumCost; 

} 

 

int main() 

{ 

    int nodes, edges, x, y; 

    long long weight, minimumCost; 

cin>> nodes >>edges; 

for(int i = 0;i < edges;++i) 

    { 

cin>> x >> y >>weight; 

adj[x].push_back(make_pair(weight, y)); 

adj[y].push_back(make_pair(weight, x)); 

    } 

    // Selecting 1 as the starting node 

minimumCost = prim(1); 

cout<<minimumCost<<endl; 

    return 0; 



 

 

} 

Time Complexity:  

The time complexity of the Prim’s Algorithm is O((V+E)logV) because each vertex is inserted in the 

priority queue only once and insertion in priority queue take logarithmic time. 

 

13.3 Summary  

In this chapter, we have studied Minimum Spanning Tree (MST) and its use in various 

algorithms like Kruskal’s Algorithm, Prim’s Algorithm. We have also seen all-pair 

shortest path algorithms like Floyd Warshall’s Algorithm, Dijkstra’s Algorithm. 

13.4 Review Your Learning 

1. Are you able to explain what is Minimum Spanning Tree (MST)? 

2. Are you able to explain Greedy algorithms working on graph data structures? 

3. Are you able to analyse the condition when to use Prim’s and Kruskal’s 

Algorithm? 

4. Are you able to find shortest path using graph algorithms?  

5. Can you explain the applications of Graph data structures in day-to-day life? 

13.5 Questions 

1. Explain Minimum Spanning Tree (MST). Explain its use in various algorithms which 

works on graphs. 

2. Explain applications of Graph data structures in day-to-day life? 

3. Explain various graph algorithms to find shortest path using Greedy Approach? 

4. Find shortest path using Prim’s Algorithm on graph given below: 



 

 

 

5. Explain difference between Greedy and Dynamic programming approach. Explain 

the examples of graph algorithms in each categories. 

13.6 Further Reading 

1. https://runestone.academy/runestone/books/published/pythonds/Graphs/Dijkstra

sAlgorithm.html 

2. https://www.oreilly.com/library/view/data-structures-

and/9781118771334/18_chap14.html 

3. https://medium.com/javarevisited/10-best-books-for-data-structure-and-

algorithms-for-beginners-in-java-c-c-and-python-5e3d9b478eb1 

4. https://examradar.com/data-structure-graph-mcq-based-online-test-3/ 

5. https://www.tutorialspoint.com/data_structures_algorithms/data_structures_algor

ithms_online_quiz.htm 

13.7 References 

1. http://www.nitjsr.ac.in/course_assignment/CS01CS1302A%20Book%20Fundament

als%20of%20Data%20Structure%20(1982)%20by%20Ellis%20Horowitz%20and%20S

artaj%20Sahni.pdf 

2. https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/ 

3. https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-

greedy-algo-6/ 

4. https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-

greedy-algo-2/ 

5. http://wccclab.cs.nchu.edu.tw/www/images/Data_Structure_105/chapter6.pdf 

https://runestone.academy/runestone/books/published/pythonds/Graphs/DijkstrasAlgorithm.html
https://runestone.academy/runestone/books/published/pythonds/Graphs/DijkstrasAlgorithm.html
https://www.oreilly.com/library/view/data-structures-and/9781118771334/18_chap14.html
https://www.oreilly.com/library/view/data-structures-and/9781118771334/18_chap14.html
https://medium.com/javarevisited/10-best-books-for-data-structure-and-algorithms-for-beginners-in-java-c-c-and-python-5e3d9b478eb1
https://medium.com/javarevisited/10-best-books-for-data-structure-and-algorithms-for-beginners-in-java-c-c-and-python-5e3d9b478eb1
https://examradar.com/data-structure-graph-mcq-based-online-test-3/
http://www.nitjsr.ac.in/course_assignment/CS01CS1302A%20Book%20Fundamentals%20of%20Data%20Structure%20(1982)%20by%20Ellis%20Horowitz%20and%20Sartaj%20Sahni.pdf
http://www.nitjsr.ac.in/course_assignment/CS01CS1302A%20Book%20Fundamentals%20of%20Data%20Structure%20(1982)%20by%20Ellis%20Horowitz%20and%20Sartaj%20Sahni.pdf
http://www.nitjsr.ac.in/course_assignment/CS01CS1302A%20Book%20Fundamentals%20of%20Data%20Structure%20(1982)%20by%20Ellis%20Horowitz%20and%20Sartaj%20Sahni.pdf
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-greedy-algo-6/
https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-greedy-algo-6/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/


 

 

 

Unit 6: Chapter 14 

Dynamic Graph Algorithms 

 

Dynamic Graph Algorithms 

14.0 Objectives ...................................................................................................................... 309 

14.1 Introduction ................................................................................................................. 310 

14.2 Dynamic Graph Algorithms ........................................................................................ 311 

14.2.1 Floyd Warshall’s Algorithm ................................................................................... 313 

14.2.2 Dijkstra’s Algorithms .............................................................................................. 320 

14.3 Applications of Graphs ............................................................................................... 325 

14.4 Summary ..................................................................................................................... 328 

14.5 Review Your Learning ................................................................................................ 328 

14.6 Questions........................................................................................................................ 328 

14.7 Further Reading ............................................................................................................. 331 

14.8 References ................................................................................................................... 331 

 

14.0 Objectives 

10. Analyse working with Kruskal’s Algorithm, Prim’s Algorithm, Warshall’s 

Algorithm 

11. Explain Shortest Path Algorithm using Dijkstra’s Algorithm 

12. Explain difference between single source shortest path and all pair shortest 

path algorithms. 

13. Explain difference between greedy and dynamic algorithm categories. 

14. Analyse the applications of graphs in day-to-day life 

 



 

 

14.1 Introduction 

A Graph is a network of interconnected items. Each item is known as a node and 

the connection between them is known as the edge. 

 

You probably use social media like Facebook, LinkedIn, Instagram, and so on. 

Social media is a great example of a graph being used. Social media uses graphs 

to store information about each user. Here, every user is a node just like in 

Graph. And, if one user, let's call him Jack, becomes friends with another user, 

Rose, then there exists an edge (connection) between Jack and Rose. Likewise, 

the more we are connected with people, the nodes and edges of the graph keep on 

increasing. 

 

Similarly, Google Map is another example where Graphs are used. In the case of 

the Google Map, every location is considered as nodes, and roads between 

locations are considered as edges. And, when one has to move from one location 

to another, the Google Map uses various Graph-based algorithms to find the 

shortest path. We will discuss this later in this blog. 

 



 

 

 

Need for Dynamic Graph Algorithms: 

The goal of a dynamic graph algorithm is to support query and update operations as 

quickly as possible (usually much faster than recomputing from scratch). Graphs 

subject to insertions only, or deletions only, but not both. Graphs subject to 

intermixed sequences of insertions and deletions. 

14.2 Dynamic Graph Algorithms 

Let us say that we have a machine, and to determine its state at time t, we have 

certain quantities called state variables. There will be certain times when we have to 

make a decision which affects the state of the system, which may or may not be 

known to us in advance. These decisions or changes are equivalent to transformations 

of state variables. The results of the previous decisions help us in choosing the future 

ones. 

What do we conclude from this? We need to break up a problem into a series of 

overlapping sub-problems and build up solutions to larger and larger sub-problems. If 

you are given a problem, which can be broken down into smaller sub-problems, and 

these smaller sub-problems can still be broken into smaller ones - and if you manage 

to find out that there are some overlapping sub-problems, then you've encountered a 

DP problem. 

Some famous Dynamic Programming algorithms are: 

 Unix diff for comparing two files 

 Bellman-Ford for shortest path routing in networks 

 TeX the ancestor of LaTeX 

 WASP - Winning and Score Predictor 

The core idea of Dynamic Programming is to avoid repeated work by remembering 

partial results and this concept finds it application in a lot of real life situations. 

In programming, Dynamic Programming is a powerful technique that allows one to 

solve different types of problems in time O(n2) or O(n3) for which a naive approach 

would take exponential time. 



 

 

Dynamic Programming and Recursion: 

Dynamic programming is basically, recursion plus using common sense. What it 

means is that recursion allows you to express the value of a function in terms of other 

values of that function. Where the common sense tells you that if you implement your 

function in a way that the recursive calls are done in advance, and stored for easy 

access, it will make your program faster. This is what we call Memorization - it is 

memorizing the results of some specific states, which can then be later accessed to 

solve other sub-problems. 

The intuition behind dynamic programming is that we trade space for time, i.e. to say 

that instead of calculating all the states taking a lot of time but no space, we take up 

space to store the results of all the sub-problems to save time later. 

Let's try to understand this by taking an example of Fibonacci numbers. 

Fibonacci (n) = 1; if n = 0 

Fibonacci (n) = 1; if n = 1 

Fibonacci (n) = Fibonacci(n-1) + Fibonacci(n-2) 

So, the first few numbers in this series will be: 1, 1, 2, 3, 5, 8, 13, 21... and so on! 

 

Majority of the Dynamic Programming problems can be categorized into two types: 

1. Optimization problems. 

2. Combinatorial problems. 

The optimization problems expect you to select a feasible solution, so that the value 

of the required function is minimized or maximized. Combinatorial problems expect 

you to figure out the number of ways to do something, or the probability of some 

event happening. 

Every Dynamic Programming problem has a schema to be followed: 

 Show that the problem can be broken down into optimal sub-problems. 

 Recursively define the value of the solution by expressing it in terms of 

optimal solutions for smaller sub-problems. 

 Compute the value of the optimal solution in bottom-up fashion. 

 Construct an optimal solution from the computed information. 



 

 

Bottom up vs. Top Down: 

Bottom Up - I'm going to learn programming. Then, I will start practicing. Then, I 

will start taking part in contests. Then, I'll practice even more and try to improve. 

After working hard like crazy, I'll be an amazing coder. 

Top Down - I will be an amazing coder. How? I will work hard like crazy. How? I'll 

practice more and try to improve. How? I'll start taking part in contests. Then? I'll 

practicing. How? I'm going to learn programming. 

 

Dynamic Programming in Graph Data Structures: 

Dynamic programming is “an algorithmic technique which is usually based on a 

recurrent formula and one (or some) starting states.” When it’s applied to graphs, we 

can solve for the shortest paths with one source or shortest paths for every pair.  

Examples: Bellman-Ford Algorithm, Floyd Warshall’s Algorithm, Dijkstra’s 

Algorithm 

 

14.2.1 Floyd Warshall’s Algorithm 

The Floyd Warshall Algorithm is for solving the All-Pairs Shortest Path problem. 

The problem is to find shortest distances between every pair of vertices in a given 

edge weighted directed Graph. Floyd Warshall Algorithm is an example of dynamic 

programming approach. 

Floyd Warshall’s Algorithm has the following main advantages- 

1. It is extremely simple. 

2. It is easy to implement. 

 

Algorithm Steps: 

1. Initialize the solution matrix same as the input graph matrix as a first step.  

2. Then update the solution matrix by considering all vertices as an intermediate 

vertex. The idea is to one by one pick all vertices and updates all shortest paths 



 

 

which include the picked vertex as an intermediate vertex in the shortest path. 

When we pick vertex number k as an intermediate vertex, we already have 

considered vertices {0, 1, 2, .. k-1} as intermediate vertices. For every pair (i, 

j) of the source and destination vertices respectively, there are two possible 

cases.  

 k is not an intermediate vertex in shortest path from i to j. We keep the value 

of dist[i][j] as it is.  

 k is an intermediate vertex in shortest path from i to j. We update the value of 

dist[i][j] as dist[i][k] + dist[k][j] if dist[i][j] >dist[i][k] + dist[k][j] 

 

The following figure shows the above optimal substructure property in the all-pairs 

shortest path problem. 

 

 

 

Program: 

// C++ Program for Floyd Warshall Algorithm  

#include <bits/stdc++.h> 

using namespace std; 

 

// Number of vertices in the graph  

#define V 4  

 



 

 

/* Define Infinite as a large enough value.This value will be used for vertices not 

connected to each other */ 

#define INF 99999  

 

// A function to print the solution matrix  

void printSolution(int dist[][V]);  

 

// Solves the all-pairs shortest path problem using Floyd Warshall algorithm  

void floydWarshall (int graph[][V])  

{  

 /* dist[][] will be the output matrix that will finally have the shortest distances 

between every pair of vertices */ 

 int dist[V][V], i, j, k; 

 

 /* Initialize the solution matrix same  as input graph matrix. Or we can say  the 

initial values of shortest distances are based on shortest paths considering no 

intermediate vertex. */ 

 for (i = 0; i< V; i++)  

  for (j = 0; j < V; j++)  

   dist[i][j] = graph[i][j]; 

 /* Add all vertices one by one to the set of intermediate vertices. ---> Before 

start of an iteration, we have shortest distances between all pairs of vertices such that 

the  shortest distances consider only the vertices in set {0, 1, 2, .. k-1} as 

intermediate vertices. ----> After the end of an iteration, vertex no. k is added to the 

set of intermediate vertices and the set becomes {0, 1, 2, .. k} */ 

 for (k = 0; k < V; k++)  



 

 

 {  

  // Pick all vertices as source one by one  

  for (i = 0; i< V; i++)  

  {  

   // Pick all vertices as destination for the above picked source  

   for (j = 0; j < V; j++)  

   {  

    // If vertex k is on the shortest path from i to j, then 

update the                

                                                // value of dist[i][j]  

    if (dist[i][k] + dist[k][j] <dist[i][j])  

     dist[i][j] = dist[i][k] + dist[k][j]; 

   }  

  }  

 }  

 // Print the shortest distance matrix  

 printSolution(dist); 

}  

 

/* A utility function to print solution */ 

void printSolution(int dist[][V])  

{  

 cout<<"The following matrix shows the shortest distances" 

   " between every pair of vertices \n"; 



 

 

 for (int i = 0; i< V; i++)  

 {  

  for (int j = 0; j < V; j++)  

  {  

   if (dist[i][j] == INF)  

    cout<<"INF"<<" "; 

   else 

    cout<<dist[i][j]<<"  ";  

  }  

  cout<<endl; 

 }  

}  

// Driver code  

int main()  

{  

 /* Let us create the weighted graph */ 

 int graph[V][V] = { {0, 5, INF, 10},  

      {INF, 0, 3, INF},  

      {INF, INF, 0, 1},  

      {INF, INF, INF, 0}  

     };  

 // Print the solution  

 floydWarshall(graph); 

 return 0; 



 

 

}  

Time Complexity- 

 Floyd Warshall Algorithm consists of three loops over all the nodes. 

 The inner most loop consists of only constant complexity operations. 

 Hence, the asymptotic complexity of Floyd Warshall algorithm is O(n3). 

 Here, n is the number of nodes in the given graph. 

When Floyd Warshall Algorithm Is Used? 

 Floyd Warshall Algorithm is best suited for dense graphs. 

 This is because its complexity depends only on the number of vertices in the 

given graph. 

 For sparse graphs, Johnson’s Algorithm is more suitable. 

Example-1: 

Consider the following directed weighted graph. Using Floyd Warshall Algorithm, 

find the shortest path distance between every pair of vertices. 

 

Step-1: 

 Remove all the self-loops and parallel edges (keeping the lowest weight edge) 

from the graph. 

 In the given graph, there are neither self-edges nor parallel edges. 

 Step-2: 

Write the initial distance matrix. 



 

 

 It represents the distance between every pair of vertices in the form of given 

weights. 

 For diagonal elements (representing self-loops), distance value = 0. 

 For vertices having a direct edge between them, distance value = weight of 

that edge. 

 For vertices having no direct edge between them, distance value = ∞. 

 Initial distance matrix for the given graph is- 

 

Step-3: 

Using Floyd Warshall Algorithm, write the following 4 matrices- 

 



 

 

Please note: 

 In the above problem, there are 4 vertices in the given graph. 

 So, there will be total 4 matrices of order 4 x 4 in the solution excluding the 

initial distance matrix. 

 Diagonal elements of each matrix will always be 0. 

The last matrix D4 represents the shortest path distance between every pair of 

vertices. 

 

14.2.2 Dijkstra’s Algorithms 

Dijkstra’s algorithm, published in 1959 and named after its creator Dutch computer 

scientist Edsger Dijkstra, can be applied on a weighted graph. The graph can either be 

directed or undirected. One stipulation to using the algorithm is that the graph needs 

to have a nonnegative weight on every edge. 

If you are given a directed or undirected weighted graph with n vertices and m edges. 

The weights of all edges are non-negative. You are also given a starting vertex s. To 

find the lengths of the shortest paths from a starting vertex s to all other vertices, and 

output the shortest paths themselves, we use Dijkstra’s Algorithm. 

This problem is also called single-source shortest paths problem. 

One algorithm for finding the shortest path from a starting node to a target node in a 

weighted graph is Dijkstra’s algorithm. The algorithm creates a tree of shortest paths 

from the starting vertex, the source, to all other points in the graph. 

Suppose a student wants to go from home to school in the shortest possible way. She 

knows some roads are heavily congested and difficult to use. In Dijkstra's algorithm, 

this means the edge has a large weight--the shortest path tree found by the algorithm 

will try to avoid edges with larger weights. If the student looks up directions using a 

map service, it is likely they may use Dijkstra's algorithm, as well as others. 

Example: Find the shortest path from home to school in the following graph: 

https://brilliant.org/wiki/graphs-basic/
https://brilliant.org/wiki/algorithms/?wiki_title=algorithm
https://brilliant.org/wiki/trees-basic/


 

 

 

The shortest path, which could be found using Dijkstra's algorithm, is 

 

HomeBDFSchool 

Algorithm: 

Dijkstra’s algorithm finds a shortest path tree from a single source node, by building 

a set of nodes that have minimum distance from the source. 

The graph has the following: 

 

 

 Vertices, or nodes, denoted in the algorithm by vv or uu; 

 Weighted edges that connect two nodes: (u,vu,v) denotes an edge, and 

w(u,v)w(u,v) denotes its weight. In the diagram on the right, the weight for 

each edge is written in gray. 



 

 

This is done by initializing three values: 

 dist, an array of distances from the source node ss to each node in the graph, 

initialized the following way: dist(s) = 0; and for all other nodes v, dist(v)=∞. 

This is done at the beginning because as the algorithm proceeds, the dist from 

the source to each node v in the graph will be recalculated and finalized when 

the shortest distance to v is found 

 Q, a queue of all nodes in the graph. At the end of the algorithm's progress, Q 

will be empty. 

 S, an empty set, to indicate which nodes the algorithm has visited. At the end 

of the algorithm's run, S will contain all the nodes of the graph. 

 The algorithm proceeds as follows: 

1. While Q is not empty, pop the node v, that is not already in SS, from Q with 

the smallest dist (v). In the first run, source node ss will be chosen because 

dist(s) was initialized to 0. In the next run, the next node with the smallest dist 

value is chosen. 

2. Add node v to S, to indicate that v has been visited 

3. Update dist values of adjacent nodes of the current node v as follows: for each 

new adjacent node u, 

4. if dist (v) + weight(u,v) <dist (u), there is a new minimal distance found for u, 

so update dist(u) to the new minimal distance value; 

5. otherwise, no updates are made to dist(u). 

The algorithm has visited all nodes in the graph and found the smallest distance to 

each node. dist now contains the shortest path tree from source s. 

Note: The weight of an edge (u,v) is taken from the value associated with (u,v) on the 

graph. 

Program: 

function Dijkstra(Graph, source): 

dist[source]  := 0                     // Distance from source to source is set to 0 



 

 

       for each vertex v in Graph:            // Initializations 

           if v ≠ source 

dist[v]  := infinity           // Unknown distance function from source to each node set  

                                                      // to infinity 

           add v to Q                         // All nodes initially in Q 

      while Q is not empty:            // The main loop 

v := vertex in Q with min dist[v]  // In the first run-through, this vertex is the source 

node 

          remove v from Q  

          for each neighbor u of v:           // where neighbor u has not yet been removed 

from Q. 

alt := dist[v] + length(v, u) 

              if alt <dist[u]:               // A shorter path to u has been found 

dist[u]  := alt            // Update distance of u  

      return dist[] 

  end function 

 

Example: 

Let us solve above example using following steps through Dijkstra's algorithm: 

2. Initialize distances according to the algorithm 

3. Pick first node and calculate distances to adjacent nodes. 

4. Pick next node with minimal distance; repeat adjacent node distance calculations. 

5. Final result of shortest-path tree 

 



 

 

 

 


