

TOPIC: 2 – HOMOMORPHISM

Homomomhitsm:
and the first of the
Def: Goroup Homomorphism:
If (9.0) and (H, *) are groups and
f: G-> H, then f is called a group homomorphism
y for all a, b = q, f (a.b) = f(a) * f(b)
Def: Isomorphism:
If f: (g, 0) → (H,*) is a
homomorphism then f is an isomorphism If it is
one-to-one and onto, in this case 9, 4 are
said to be isomorphic group.
Def: cyclic :
Group of is called cyclic if there is an
element x & Gy such that for each a & Gy.
a=xn for some nez

Find all sub groups of (212, +) group Solution To determine all subgroups of the group (21, 1+) Since je? and G are the trivial subgroups of Group of. for and z1, are the trivial subgroups of (z1,2,+) If G is group and \$ + HCG, with His finite, than H is subgroup of of if and only if H is clased under the binary operation of G. Clearly {0,6}, {0,4,8}, {0,3,6,9}, {0,2,4,6,8,0} are properties of subsets of group (212, +)
 + 0 6
 + 0 4 8
 + 0 3 6 9

 0 0 6
 0 0 4 8
 0 0 3 6 9

 6 6 0
 4 4 8 0
 6 6 9 0 3

 8 8 0 4
 6 6 9 0 3

Find all the subgroups of (z", .) grays.

Solution

To determine all subgroups of the group (zt.) Since let and a are the burial subgroups of group 4. fif and z' we the brinal subgroup of izing

If q is a group and \$ + H C q, with H is finite, then H is a subgroup of or if and only of H is closed under the binary operation of G.

clearly {1,103, {1,3,4,5,9} are proper subsets of group (z +, +)

from the table we observe that {1,103, {1,3,4,5,9} ove closed under the binary operation.

Hence, all sub group of (2911. -) are fig, (1,10), [1,3,4,5,9] z*

			www.snsgroups.co					
SI	Name	Rigid Motion Before Alten	fermutation of					
01	for identity		(1, 2 3 4)					
	1, rotate		(1 2 3 4 4 1 2 3)					
03	fo rotate 180° clockwise		$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 3 \end{pmatrix}$					
D4	84 rotate 90° counter clockwise	2 2 3	(1 2 3 4)					
05	Ba reflect		(1 2 3 4) (2 1 4 5)					
06	fo reflect	2 7 3	(1 2 3 4) (4 3 2 1)					
07	by reflect	3 4	(3 2 3 4)					
68	fs reflect		(1 2 3 4)					

	8.	B2	₽8	Ba	Ba	86	B7	B8
€,	8.	82	13	品	85	f.	37	68
62	1/2	bs	64	80	8-	88	86	Br
							68	
							80	
							6+	
							82	
37	67	1 Fr	68	80	62	64	6.	83
88	88	86	87	60	64	12	63	6,

Example
$$\beta \cdot \beta + \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$

Hence the composition o binary is a clasure operation and is associative.