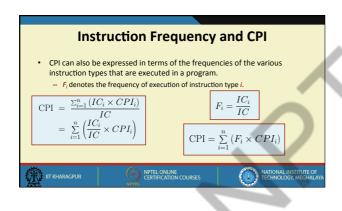
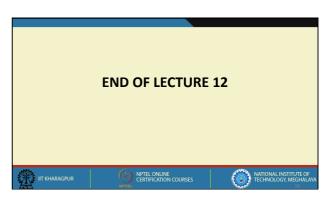
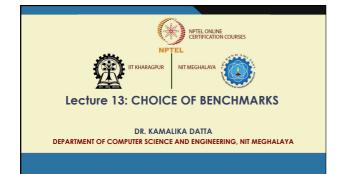
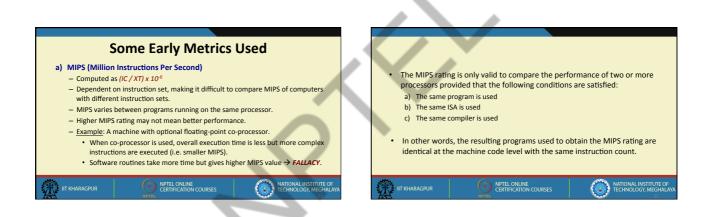


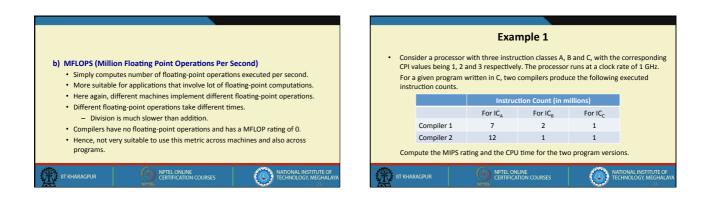
Factors Affecting Performance С CPI IC Hardware Technology (VLSI) х Hardware Technology (Organization) х х х х Instruction set architecture х х **Compiler technology** Program х х NPTEL ONLINE CERTIFICATION COURSES

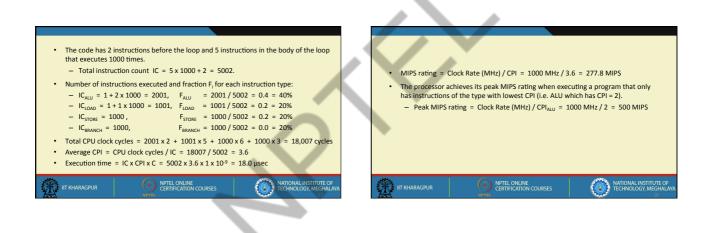


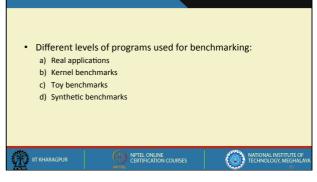

Instruction Types and CPI
 Consider a program executing on a processor, with <i>n</i> types or classes of instructions (like, load, store, ALU, branch, etc.). <i>IC_i</i> = number of instructions of type <i>i</i> executed <i>CPI_i</i> = cycles per instruction for type <i>i</i>
The following expressions follow.
CPU clock cycles = $\sum_{i=1}^{n} (IC_i \times CPI_i)$ CPI = $\frac{\sum_{i=1}^{n} (IC_i \times CPI_i)}{IC}$
Instruction Count (IC) = $\sum_{i=1}^{n} IC_i$ = $\sum_{i=1}^{n} \left(\frac{IC_i}{IC} \times CPI_i\right)$
IT KHARAGPUR OF CERTIFICATION COURSES


Example 4											
 Consider an implementation of a ISA where the instructions can be classified into four types, with CPI values of 1, 2, 3 and 4 respectively. Two code sequences have the following instruction counts: 											
Code Sequence IC _{Type1} IC _{Type2} IC _{Type3} IC _{Type4}											
	CS-1	20	15	5	2						
	CS-2	10	12	10	4						
CPU cycles for CS-1: 20x1 + 15x2 + 5x3 + 2x4 = 73 CPI for CS-1: 73 / 42 = 1.74 CPU cycles for CS-2: 10x1 + 12x2 + 10x3 + 4x4 = 80 CPI for CS-2: 80 / 36 = 2.22											
	IIT KHARAGPUR OFTEL ONLINE CERTIFICATION COURSES OF NATIONAL INSTITUTE OF										


Example 5										
 Suppose for an implementation of a RISC ISA there are four instruction types, with their frequency of occurrence (for a typical mix of programs) and CPI as shown in the table below. 										
	Туре	Frequency	СРІ	$CPI = \sum_{i=1}^{n} (F_i \times CPI_i)$						
	Load	20 %	4	<i>i</i> =1						
	Store	8 %	3							
	ALU	60 %	1	$CPI = (0.20 \times 4) + (0.08 \times 3) + (0.60 \times 1) + (0.12 \times 2)$						
	Branch	12 %	2	= 1.88						
	IIT KHARAGPUR	() N		NE COURSES OF TECHNOLOGY, MEGHALAYA						

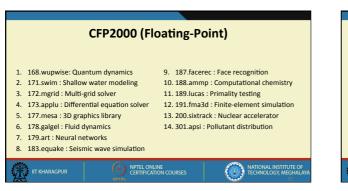

	Example 6										
 Suppose that a program is running on a machine with the following instruction types, CPI values, and the frequencies of occurrence. The CPU designer gives two options: (a) reduce CPI of instruction type A to 1.1, and (b) reduce CPI of instruction type B to 1.6. Which one is better? 											
т	ype	CPI	Frequency	Average CPI for (a): 0.60 x 1.1 + 0.10 x 2.2 + 0.30 x 2.0							
	А	1.3	60 %	= 1.48							
	В	2.2	10 %	Average CPI for (b): 0.60 x 1.3 + 0.10 x 1.6 + 0.30 x 2.0							
C 2.0 30 %				= 1.54							
				Option (a) is better							
	_										
				PTEL ONLINE ERTIFICATION COURSES							

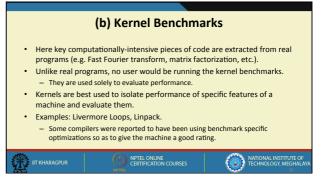


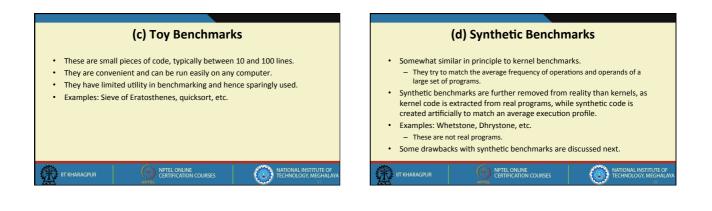


MIPS = Clock Rate (MHz) / CPI	CPI = CPU Execution Cycles / Instruction Count							
Solution:	CPU Time = Instruction Count x CPI / Clock Rate							
– For compiler 1:								
$CPI_1 = (7 \times 1 + 2 \times 2 + 1 \times 3) / (7 + 2 + 1) = 14 / 10 = 1.40$								
MIPS Rating ₁ = 1000 MHz / 1.40 = 714.3 MIPS								
CPU Time ₁ = $((7 + 2 + 1) \times 10^6 \times 1.40) / (1 \times 10^9) = 0.014$ sec								
– For compiler 2:								
CPI ₂ = (12 x 1 + 1 x 2 + 1 x 3) / (12 + 1 + 1) = 17 / 14 = 1.21								
MIPS Rating ₂ = 1000 MHz / 1.21 = 826.4 MIPS								
$CPU Time_2 = ((12 + 1))$	CPU Time ₂ = $((12 + 1 + 1) \times 10^6 \times 1.21) / (1 \times 10^9) = 0.017$ sec							
MIPS rating indicates that compiler 2 is faster, while in reality the reverse is true.								
	NPTEL ONLINE CERTIFICATION COURSES							

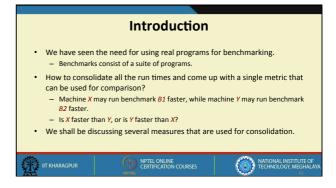
Example 2 \$t1 = address of s \$t3 = s								
A loop in C						\$t2 points	to A[0]	
<pre>for (k=0; k<1000; k++) {</pre>	ADDI \$t6, \$t2, 4000 Loop: LW \$t4, 0(\$t3)				MIPS32 Co	ode		
 The code is executed on a pro 	acessor ti	hat runs	at 1 GH	17	_	Instruc	tion Type	CPI
(C = 1 nsec).	JCE3501 [1	laciuns		12			ALU	2
There are four instruction typ	oes with O	CPI value	s as sho	own in		U	DAD	5
the table.	the table. STORE 6						6	
 We show some calculations r 	next.					BR	ANCH	3
IT KHARAGPUR MITCHINGOV							NATIONAL INST TECHNOLOGY, M	ITUTE OF MEGHALAYA 26

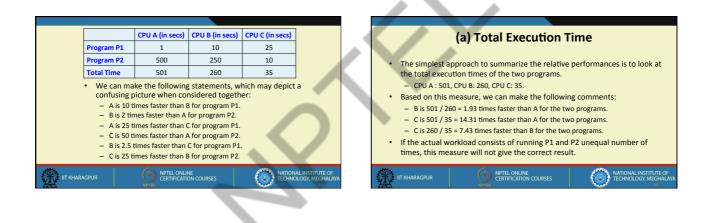

(a) Real Applications

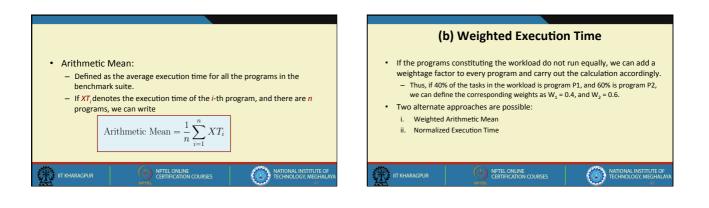

- Here we select a specific mix or suite of programs that are typical of target applications or workload (e.g. SPEC95, SPEC CPU2000, etc.).
- SPEC (System Performance Evaluation Corporation) is the most popular and industry-standard set of CPU benchmarks.
- Examples:
 - SPECint95 consists of 8 integer programs.
 - SPECfp95 consists of 10 floating-point intensive programs.
 - SPEC CPU2000 consists of 12 integer programs (CINT2000) and 14 floating-point intensive programs (CFP2000).
 - SPEC CPU2006 consists of 12 integer programs (CINT2006) and 17 floating-point intensive programs (CFP2006).

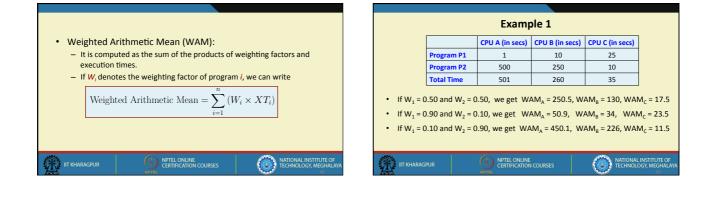

NPTEL ONLINE CERTIFICATION COURSES	NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

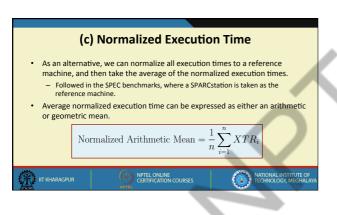
SI	PEC95 Programs (Integer)				
Benchmark	Description				
go	A game based on artificial intelligence				
m88ksim	A simulator for Motorola 88k chip				
gcc	Gnu C compiler to generate SPARC code				
compress Compression and decompression utility					
li	LISP interpreter				
ijpeg	Image compression and decompression utility				
perl	PERL interpreter				
vortex	A database program				
ARAGPUR	NPTEL ONLINE CERTIFICATION COURSES				

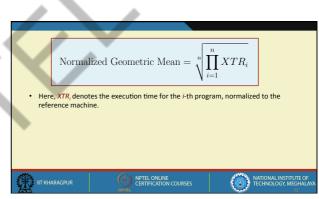


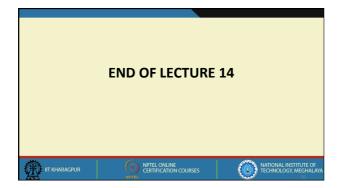


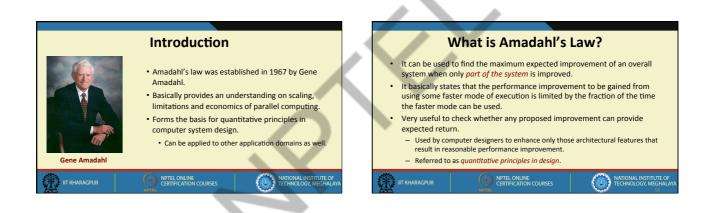


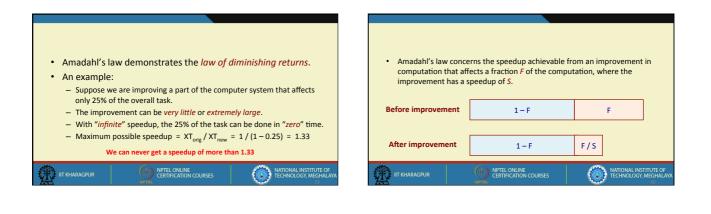


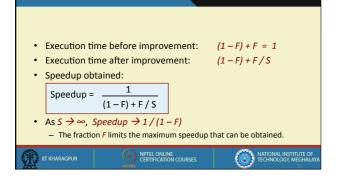


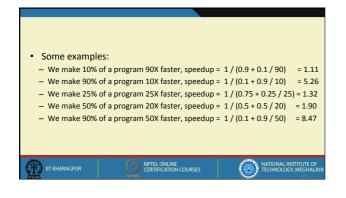

Example:- SPEC benchmarks mention details such as: An example Program P1 1 10		
Actual run time of a program on a machine depends on so many factors. Degree of multiprogramming, disk usage, compiler optimization, etc. Reproducibility of the experiments is very important. Anyone should be able to run the experiment and get the same results. Benchmarks must therefore specify the execution environment very clearly. Example:- SPEC benchmarks mention details such as: Actual run time of a program on a machine depends on so many factors. Benchmarks mention details such as: An example Program P1 1	What about Reproducibility?	ince Results?
Extensive description of the computer and the compiler flags. Hardware, software and baseline tuning parameters. Program P2 500 250 Total Time 501 260	 Degree of multiprogramming, disk usage, compiler optimization, etc. Reproducibility of the experiments is very important. Anyone should be able to run the experiment and get the same results. Benchmarks must therefore specify the execution environment very clearly. Example:- SPEC benchmarks mention details such as: Extensive description of the computer and the compiler flags. 	omputer runs faster. comparison may not be PU B (in secs) CPU C (in secs) 10 25 250 10
IT KHARAGPUR OF TECHNOLOGY MEGHALAVA		NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

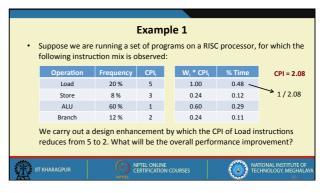


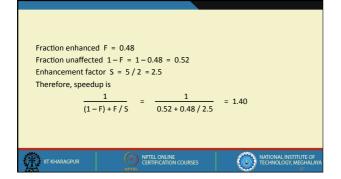


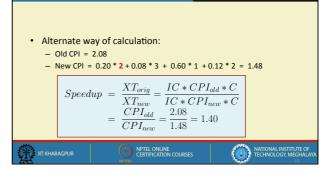

5			CPU A (in secs) CP				CPL	U B (in secs) CPU C (in secs)			secs)			
Example	: Z	Program P1		L	1				10			25		
		Program P2			500		250				10			
		Total Time				501			260			35		
		Normalized to A		Normalized to B			Normalized to C							
		A	В	C		А		В	С	A		В	С	
Program P1	:	L.0	10.0	25.	0	0.1	1	L.O	2.5	0.04	4	0.4	1.0	
Program P2	:	L.O	0.5	0.0	2	2.0	1	L.O	0.04	50.0	0	25.0	1.0	
Arithmetic mean		L.0	5.25	12.5	51	1.05	1	L.O	1.27	25.0)2	12.7	1.0	
Geometric me	ean :	L.0	2.24	0.7	1	0.45	1	1.0	0.32	1.4	1	3.16	1.0	
						NLINE ATION COUR	SES		(٢		fional in "Hnolog"		

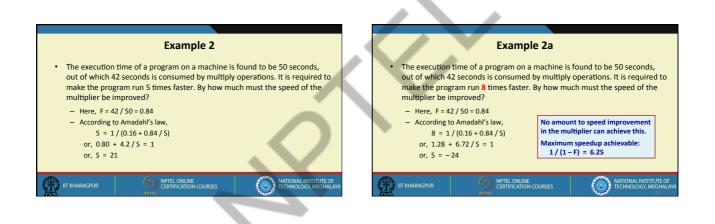

Summary:		
	to arithmetic means, geometric r times are consistent no matter wh	
 Hence, the execution 	e arithmetic mean should not be u times.	sed to average normalized
 One drawl execution 	back of geometric mean is that the times.	y do not predict
attentio	n encourage hardware and software d on to those benchmarks where perform than the ones that are the slowest.	
IT KHARAGPUR		NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA
	NOTEL	54

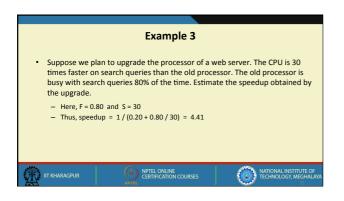


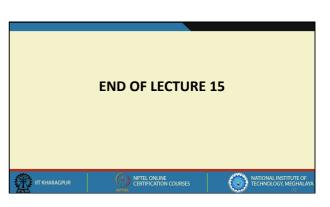


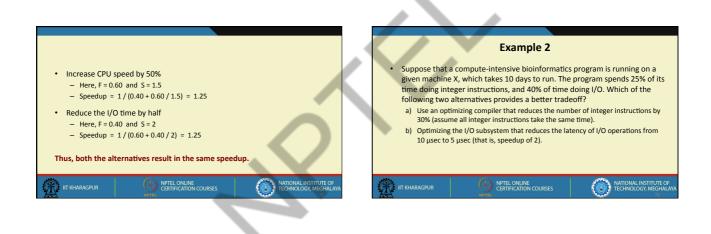

 Illustration of law of diminishing returns: 1/(1-0.25) = 1.33 Let F = 0.25. The table shows the speedup (= 1/(1 - F + F/S) for various values of S. 										
	S	Speedup		S	Speedup					
	1	1.00		50	1.32					
	2	1.14		100	1.33					
	5 1.25		25 1000	1000	1.33					
10 1.29				100,000	1.33					
IT KHARAGPUR OPTEL ONLINE CERTIFICATION COURSES TO NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAVA										

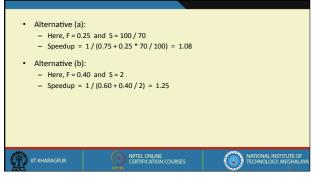

- Let $F = 0.7$	of law of diminis 5. shows the speedup	Ū		1 / (1 – 0.75) = 4.00
S	Speedup		S	Speedup
1	1.00		50	3.77
2	1.60		100	3.88
5	2.50		1000	3.99
10	3.08		100,000	4.00

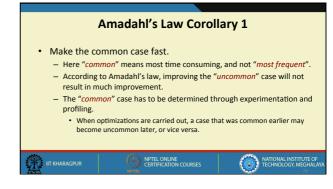

	\sim		
1	Design A	lternative us	ing Amadahl's law
	Loop 1	500 lines	10% of total execution time
	Loop 2	} 20 lines	90% of total execution time
	IIT KHARAGPUR	NPTEL ONLINE CERTIFICATION C	OURSES NATIONAL INSTITUTE OF TECHNOLOGY, MECHALAYA

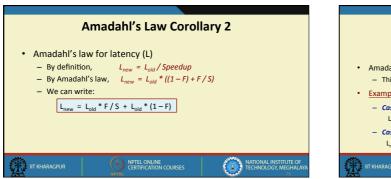


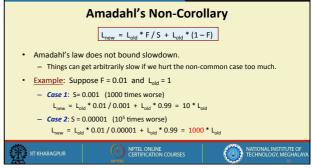


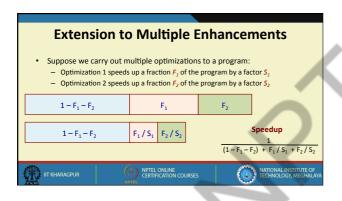


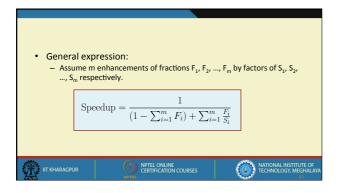


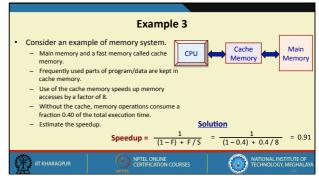


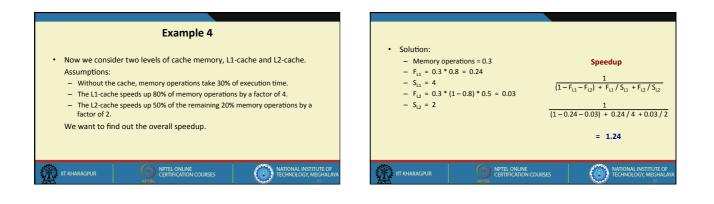


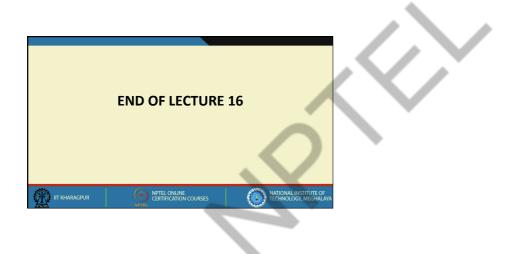

			Exar	nple	1		
 The total execution time of a typical program is made up of 60% of CPU time and 40% of I/O time. Which of the following alternatives is better? a) Increase the CPU speed by 50% b) Reduce the I/O time by half Assume that there is no overlap between CPU and I/O operations. 							
	CPU	I/O	CPU	I/O	CPU	I/O	
	GPUR	(LINE TION COUR	SES	6	NATIONAL INSTITUTE OF
		NP	TEL				74











 In the calculation as shown, it is assumed that F₁ and F₂ are disjoint. S₁ and S₂ do not apply to the same portion of execution. If it is not so, we have to treat the overlap as a separate portion of execution and measure its speedup independently. F₁₀₀₀, F₂₀₀₀, and F₁₈₂ with speedups S₁₀₀₀, S₂₀₀₀, and S₁₈₂ 				
1-F _{1only} -F _{2only} -F _{1&2} F _{1only} F _{1&2} F _{2only}				
$1 - F_{1only} - F_{2only} - F_{182} = \frac{F_{1only}}{S_{1only}} + \frac{F_{182}}{S_{1282}} + \frac{F_{2only}}{S_{2only}}$				
Speedup = $\frac{1}{(1 - F_{1only} - F_{2only} - F_{182}) + F_{1only} / S_{1only} + F_{2only} / S_{2only} + F_{182} / S_{182}}$				
IT KHARAGPUR OPTEL ONLINE CERTIFICATION COURSES				

