
24/07/17	

1	

2	1	

Lecture 12: MEASURING CPU PERFORMANCE

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Introduc)on	
•  Most	processors	execute	instruc4ons	in	a	synchronous	manner	using	a	clock	

that	runs	at	a	constant	clock	rate	or	frequency	f.	
•  Clock	cycle	4me	C	is	the	reciprocal	of	the	clock	rate	f:	

			C		=		1	/	f	
•  The	clock	rate	f	depends	on	two	factors:	

a)  The	implementa4on	technology	used.	
b)  The	CPU	organiza4on	used.	

•  A	machine	instruc4on	typically	consists	of	a	number	of	elementary	micro-
opera4ons	that	vary	in	number	and	complexity	depending	on	the	
instruc4on	and	the	CPU	organiza4on	used.	

2	

2	

•  A	micro-opera4on	is	an	elementary	hardware	opera4on	that	can	be	
carried	out	in	one	clock	cycle.		
–  Register	transfer	opera4ons,	arithme4c	and	logic	opera4ons,	etc.	

•  Thus	a	single	machine	instruc4on	may	take	one	or	more	CPU	cycles	to	
complete.	
–  We	can	characterize	an	instruc4on	by	Cycles	Per	Instruc6on	(CPI).	

•  Average	CPI	of	a	program:	
–  Average	CPI	of	all	instruc4ons	executed	in	the	program	on	a	given	processor.	
–  Different	instruc4ons	can	have	different	CPIs.	

3	 2	

•  For	a	given	program	compiled	to	run	on	a	specific	machine,	we	can	define	
the	following	parameters:	
a)  The	total	number	of	instruc4ons	executed	or	instruc6on	count	(IC).	
b)  The	average	number	of	cycles	per	instruc6on	(CPI).	
c)  Clock	cycle	6me	(C)	of	the	machine.	

•  The	total	execu4on	4me	can	be	computed	as:	
				Execu&on	Time		XT		=		IC		x		CPI		x		C	

•  How	do	we	evaluate	and	compare	the	performances	of	several	machines?	

4	

2	

By	Measuring	the	Execu)on	Times	

•  One	of	the	easiest	methods	to	make	the	comparison.	
•  We	measure	the	execu4on	4mes	of	a	program	on	two	machines	(A	and	B),	as	

XTA	and	XTB.	
•  Performance	can	be	defined	as	the	reciprocal	of	execu4on	4me:	

		 	PerfA		=		1	/	XTA	
		 	PerfB		=		1	/	XTB	

•  We	can	es4mate	the	speedup	of	machine	A	over	machine	B	as:	
		 	Speedup		=		PerfA	/	PerfB		=		XTB	/	XTA	

5	 2	

•  An	example:	
A	program	is	run	on	three	different	machines	A,	B	and	C	and	execu4on	
4mes	of	10,	25	and	75	are	noted.	
–  A	is	2.5	4mes	faster	than	B	
–  A	is	7.5	4mes	faster	than	C	
–  B	is	3.0	4mes	faster	than	C	

•  Simple	for	one	program.	But	the	main	challenge	is	to	extend	the	comparison	
when	we	have	a	set	of	programs.	
–  Shall	be	discussed	later.	

6	

24/07/17	

2	

2	

Example	1	

•  A	program	is	running	on	a	machine	with	the	following	parameters:	
–  Total	number	of	instruc4ons	executed	=	50,000,000	
–  Average	CPI	for	the	program	=	2.7	
–  CPU	clock	rate	=	2.0	GHz			(i.e.		C	=	0.5	x	10-9	sec)	

•  Execu4on	4me	of	the	program:	
		XT		=		50,000,000	x	2.7	x	0.5	x	10-9			=		0.0675	sec	

7	

XT		=		IC	x	CPI	x	C	

2	

Factors	Affec)ng	Performance	

8	

C	 CPI	 IC	

Hardware	Technology	(VLSI)	 X	

Hardware	Technology	(Organiza)on)	 X	 X	

Instruc)on	set	architecture	 X	 X	

Compiler	technology	 X	 X	

Program	 X	 X	

2	

•  IC	depends	on:	
–  Program	used,	compiler,	ISA	

•  CPI	depends	on:	
–  Program	used,	compiler,	ISA,	CPU	organiza4on	

•  C	depends	on:	
–  Technology	used	to	implement	the	CPU	

•  Unfortunately,	it	is	very	difficult	to	change	one	parameter	in	complete	
isola4on	from	the	others.	
–  Basic	technologies	are	interdependent.	

9	 2	

•  A	tradeoff:	
–  RISC:	increases	number	of	instruc4ons/program,	but	decreases	CPI	and	

clock	cycle	4me	because	the	instruc4ons	and	hence	the	implementa4ons	
are	simple.	

–  CISC:	decreases	number	of	instruc4ons/program,	but	increases	CPI	and	
clock	cycle	4me	because	many	instruc4ons	are	more	complex.	

•  Overall,	it	has	been	found	through	experimenta4on	that	RISC	
architecture	gives	becer	performance.	

10	

2	

Example	2	
•  Suppose	that	a	machine	A	executes	a	program	with	an	average	CPI	of	2.3.		

Consider	another	machine	B	(with	the	same	instruc4on	set	and	a	becer	
compiler)	that	executes	the	same	program	with	20%	less	instruc4ons	and	
with	a	CPI	of	1.7	at	1.2	GHz.	
What	should	be	the	clock	rate	of	A	so	that	the	two	machines	have	the	same	
performance?	

11	

We	must	have:			 	ICA	x	CPIA	x	CA		=		ICB	x	CPIB	x	CB		
Hence:		 	 	ICA	x	2.3	x	CA		=		0.80	x	ICA	x	1.7	x	(1	/	(1.2	x	109))	
We	get:		 	CA		=			0.49	x	10-9	sec	
Thus,	clock	rate	of	A		=		1	/	CA		=	2.04	GHz	

2	

Example	3	
•  Consider	the	earlier	example	with	IC	=	50,000,000;	average	CPI	=	2.7,	and	

clock	rate	=	2.0	GHz.		
						Suppose	we	use	a	new	compiler	on	the	same	program,	for	which:	

–  New	IC	=	40,000,000	
–  New	CPI	=	3.0 	(i.e.	the	new	compiler	is	using	more	complex	instruc4ons)	
–  Also	we	have	a	faster	CPU	implementa4on,	with	clock	rate	=	2.4	GHz.	

							Speedup		=		XTold	/	XTnew			
																								=		(50,000,000	x	2.7	x	0.5	x	10-9)	/	(40,000,000	x	3.0	x	0.4167	x	10-9)		
																								=		1.35					à			35%	faster	

12	

24/07/17	

3	

2	

Instruc)on	Types	and	CPI	
•  Consider	a	program	execu4ng	on	a	processor,	with	n	types	or	classes	of	

instruc4ons	(like,	load,	store,	ALU,	branch,	etc.).	
				ICi		=		number	of	instruc4ons	of	type	i	executed	
				CPIi		=		cycles	per	instruc4on	for	type	i		

•  The	following	expressions	follow.	

13	

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
Ci

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

1

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
Ci

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

1

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
ICi

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

Fi =
ICi

IC

1

2	

Example	4	
•  Consider	an	implementa4on	of	a	ISA	where	the	instruc4ons	can	be	classified	

into	four	types,	with	CPI	values	of	1,	2,	3	and	4	respec4vely.		
						Two	code	sequences	have	the	following	instruc4on	counts:	

14	

Code	Sequence	 ICType1	 ICType2	 ICType3	 ICType4	

CS-1	 20	 15	 5	 2	

CS-2	 10	 12	 10	 4	

CPU	cycles	for	CS-1:	20x1	+	15x2	+	5x3	+	2x4	=	73			

CPU	cycles	for	CS-2:	10x1	+	12x2	+	10x3	+	4x4	=	80			

CPI	for	CS-1:	73	/	42	=	1.74			

CPI	for	CS-2:	80	/	36	=	2.22			

2	

Instruc)on	Frequency	and	CPI	

•  CPI	can	also	be	expressed	in	terms	of	the	frequencies	of	the	various	
instruc4on	types	that	are	executed	in	a	program.	
–  Fi	denotes	the	frequency	of	execu4on	of	instruc4on	type	i.	

15	

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
ICi

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

Fi =
ICi

IC

1

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
ICi

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

Fi =
ICi

IC

CPI =

nX

i=1
(Fi ⇥ CPIi)

1

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
Ci

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

1

2	

Example	5	
•  Suppose	for	an	implementa4on	of	a	RISC	ISA	there	are	four	instruc4on	

types,	with	their	frequency	of	occurrence	(for	a	typical	mix	of	programs)		
and	CPI	as	shown	in	the	table	below.	

16	

Type	 Frequency	 CPI	

Load	 20	%	 4	

Store	 8	%	 3	

ALU	 60	%	 1	

Branch	 12	%	 2	

CPI	=	(0.20	x	4)	+	(0.08	x	3)	+	(0.60	x	1)	
																												+	(0.12	x	2)			
							=		1.88	

CPU clock cycles =

nX

i=1
(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1
ICi

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

0

@
ICi

IC
⇥ CPIi

1

A

Fi =
ICi

IC

CPI =

nX

i=1
(Fi ⇥ CPIi)

1

2	

Example	6	
•  Suppose	that	a	program	is	running	on	a	machine	with	the	following	

instruc4on	types,	CPI	values,	and	the	frequencies	of	occurrence.	
The	CPU	designer	gives	two	op4ons:	(a)	reduce	CPI	of	instruc4on	type	A	to	
1.1,	and	(b)	reduce	CPI	of	instruc4on	type	B	to	1.6.	Which	one	is	becer?	

17	

Type	 CPI	 Frequency	

A	 1.3	 60	%	

B	 2.2	 10	%	

C	 2.0	 30	%	

Average	CPI	for	(a):	0.60	x	1.1	+	0.10	x	2.2	+	0.30	x	2.0	
																																				=		1.48	
	
Average	CPI	for	(b):	0.60	x	1.3	+	0.10	x	1.6	+	0.30	x	2.0	
																																				=			1.54	
Op&on	(a)	is	beAer	

2	

END	OF	LECTURE	12	

18	

24/07/17	

4	

2	19	

Lecture 13: CHOICE OF BENCHMARKS

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Introduc)on	

•  Basic	concept:	
–  How	to	compare	the	performances	of	two	or	more	computer	systems?	
–  We	need	to	execute	some	programs	and	measure	the	execu4on	4mes.	

•  Set	of	standard	programs	used	to	comparison	is	called	benchmark.	
•  Various	metrics	have	been	proposed	to	carry	out	the	evalua4on.	

–  To	be	discussed	next.	

20	

2	

Some	Early	Metrics	Used	
a)  MIPS	(Million	Instruc)ons	Per	Second)	

–  Computed	as	(IC	/	XT)	x	10-6		

–  Dependent	on	instruc4on	set,	making	it	difficult	to	compare	MIPS	of	computers	
with	different	instruc4on	sets.	

–  MIPS	varies	between	programs	running	on	the	same	processor.	
–  Higher	MIPS	ra4ng	may	not	mean	becer	performance.	
–  Example:	A	machine	with	op4onal	floa4ng-point	co-processor.	

•  When	co-processor	is	used,	overall	execu4on	4me	is	less	but	more	complex	
instruc4ons	are	executed	(i.e.	smaller	MIPS).	

•  Solware	rou4nes	take	more	4me	but	gives	higher	MIPS	value	à	FALLACY.	

21	 2	

•  The	MIPS	ra4ng	is	only	valid	to	compare	the	performance	of	two	or	more	
processors	provided	that	the	following	condi4ons	are	sa4sfied:	
a)  The	same	program	is	used	
b)  The	same	ISA	is	used	
c)  The	same	compiler	is	used	

•  In	other	words,	the	resul4ng	programs	used	to	obtain	the	MIPS	ra4ng	are	
iden4cal	at	the	machine	code	level	with	the	same	instruc4on	count.	

22	

2	

b)  MFLOPS	(Million	Floa)ng	Point	Opera)ons	Per	Second)	
•  Simply	computes	number	of	floa4ng-point	opera4ons	executed	per	second.	
•  More	suitable	for	applica4ons	that	involve	lot	of	floa4ng-point	computa4ons.	
•  Here	again,	different	machines	implement	different	floa4ng-point	opera4ons.	
•  Different	floa4ng-point	opera4ons	take	different	4mes.	

–  	Division	is	much	slower	than	addi4on.	
•  Compilers	have	no	floa4ng-point	opera4ons	and	has	a	MFLOP	ra4ng	of	0.	
•  Hence,	not	very	suitable	to	use	this	metric	across	machines	and	also	across	
programs.	

23	 2	

Example	1	

•  Consider	a	processor	with	three	instruc4on	classes	A,	B	and	C,	with	the	corresponding	
CPI	values	being	1,	2	and	3	respec4vely.	The	processor	runs	at	a	clock	rate	of	1	GHz.	
For	a	given	program	wricen	in	C,	two	compilers	produce	the	following	executed	
instruc4on	counts.	

Compute	the	MIPS	ra4ng	and	the	CPU	4me	for	the	two	program	versions.	

24	

Instruc)on	Count	(in	millions)	

For	ICA	 For	ICB	 For	ICC	

Compiler	1	 7	 2	 1	

Compiler	2	 12	 1	 1	

24/07/17	

5	

2	

•  Solu4on:	
–  For	compiler	1:	
										CPI1		=		(7	x	1		+		2	x	2		+		1	x	3)		/		(7	+	2	+	1)			=			14	/	10			=			1.40	
										MIPS	Ra4ng1			=			1000	MHz	/	1.40			=			714.3	MIPS	
										CPU	Time1			=			((7	+	2	+	1)	x	106	x	1.40)	/	(1	x	109)			=			0.014	sec	
–  For	compiler	2:	
										CPI2		=		(12	x	1		+		1	x	2		+		1	x	3)		/		(12	+	1	+	1)			=			17	/	14			=			1.21	
										MIPS	Ra4ng2			=			1000	MHz	/	1.21			=			826.4	MIPS	
										CPU	Time2			=			((12	+	1	+	1)	x	106	x	1.21)	/	(1	x	109)			=			0.017	sec	

25	

MIPS	=	Clock	Rate	(MHz)	/	CPI	 CPI	=	CPU	Execu4on	Cycles	/	Instruc4on	Count	

CPU	Time	=	Instruc4on	Count	x	CPI	/	Clock	Rate	

MIPS	ra&ng	indicates	that	compiler	2	is	faster,	while	in	reality	the	reverse	is	true.	

2	

Example	2	

26	

 LW $t3, 0($t1)
 ADDI $t6, $t2, 4000

Loop: LW $t4, 0($t3)
 ADD $t5, $t4, $t3
 SW $t5, 0($t2)
 ADDI $t2, $t2, 4
 BNE $t6, $t2, Loop

for (k=0; k<1000; k++)
{
 A[k] = A[k] + s;
}

A	loop	in	C	

MIPS32	Code	

•  $t1	=	address	of	s	
•  $t3	=	s	
•  $t2	points	to	A[0]		

•  The	code	is	executed	on	a	processor	that	runs	at	1	GHz								
(C	=	1	nsec).	

•  There	are	four	instruc4on	types	with	CPI	values	as	shown	in	
the	table.	

•  We	show	some	calcula4ons	next.	

Instruc)on	Type	 CPI	

ALU	 2	

LOAD	 5	

STORE	 6	

BRANCH	 3	

2	

•  The	code	has	2	instruc4ons	before	the	loop	and	5	instruc4ons	in	the	body	of	the	loop	
that	executes	1000	4mes.	
–  Total	instruc4on	count		IC		=		5	x	1000	+	2		=		5002.	

•  Number	of	instruc4ons	executed	and	frac4on	Fi	for	each	instruc4on	type:	
–  ICALU		=		1	+	2	x	1000		=		2001,						FALU							=		2001	/	5002		=		0.4		=		40%	
–  ICLOAD		=		1	+	1	x	1000		=		1001,				FLOAD					=		1001	/	5002		=		0.2		=		20%	
–  ICSTORE		=		1000	,																														FSTORE				=		1000	/	5002		=		0.2		=		20%	
–  ICBRANCH		=		1000,																												FBRANCH		=		1000	/	5002		=		0.0		=		20%	

•  Total	CPU	clock	cycles		=		2001	x	2		+		1001	x	5		+		1000	x	6		+		1000	x	3		=		18,007	cycles	
•  Average	CPI		=		CPU	clock	cycles	/	IC		=		18007	/	5002		=		3.6	
•  Execu4on	4me		=		IC	x	CPI	x	C		=		5002	x	3.6	x	1	x	10-9		=		18.0	μsec	
	

27	 2	

•  MIPS	ra4ng		=		Clock	Rate	(MHz)	/	CPI		=		1000	MHz	/	3.6		=		277.8	MIPS	

•  The	processor	achieves	its	peak	MIPS	ra4ng	when	execu4ng	a	program	that	only	
has	instruc4ons	of	the	type	with	lowest	CPI	(i.e.	ALU	which	has	CPI	=	2).	
–  Peak	MIPS	ra4ng		=		Clock	Rate	(MHz)	/	CPIALU		=		1000	MHz	/	2		=		500	MIPS	

28	

2	

Choosing	Programs	for	Benchmarking	

•  Suppose	you	are	trying	to	buy	a	new	computer	and	you	have	several	
alterna4ves.	
–  How	to	decide	which	one	will	be	best	for	you?	

•  The	best	way	to	evaluate	is	to	run	the	actual	applica4ons	that	you	are	
expected	to	run	(actual	target	workload),	and	find	out	which	computer	runs	
them	the	fastest.	
–  Not	possible	for	everyone	to	do	this.	
–  We	olen	rely	on	other	methods	that	are	standardized	to	give	us	a	good	measure	

of	performance.	

29	 2	

•  Different	levels	of	programs	used	for	benchmarking:	
a)  Real	applica4ons	
b)  Kernel	benchmarks	
c)  Toy	benchmarks	
d)  Synthe4c	benchmarks	

30	

24/07/17	

6	

2	

(a)	Real	Applica)ons	
•  Here	we	select	a	specific	mix	or	suite	of	programs	that	are	typical	of	target	

applica4ons	or	workload	(e.g.	SPEC95,	SPEC	CPU2000,	etc.).	
•  SPEC	(System	Performance	Evalua6on	Corpora6on)	is	the	most	popular	and	

industry-standard	set	of	CPU	benchmarks.	
•  Examples:	

–  SPECint95	consists	of	8	integer	programs.	
–  SPECfp95	consists	of	10	floa4ng-point	intensive	programs.	
–  SPEC	CPU2000	consists	of	12	integer	programs	(CINT2000)	and	14	floa4ng-point	

intensive	programs	(CFP2000).	
–  SPEC	CPU2006	consists	of	12	integer	programs	(CINT2006)	and	17	floa4ng-point	

intensive	programs	(CFP2006).	

31	 2	

SPEC95	Programs	(Integer)	

32	

Benchmark	 Descrip)on	
go	 A	game	based	on	ar4ficial	intelligence	

m88ksim	 A	simulator	for	Motorola	88k	chip	

gcc	 Gnu	C	compiler	to	generate	SPARC	code	

compress	 Compression	and	decompression	u4lity	

li	 LISP	interpreter	

ijpeg	 Image	compression	and	decompression	u4lity	

perl	 PERL	interpreter	

vortex	 A	database	program	

2	

SPEC95	Programs	
(Floa)ng-Point)	

33	

Benchmark	 Descrip)on	

tomcatv	 A	mesh	genera4on	program	

swim	 Shallow	water	modeling	

su2cor	 Quantum	physics	Monte	Carlo	simula4on	

hydro2d	 Solving	hydrodynamic	Naiver	Stokes	equa4ons	

mgrid	 Mul4grid	solver	on	3D	poten4al	field	

applu	 Solving	parabolic/ellip4cal	differen4al	equa4ons	

trub3d	 Simulates	turbulence	in	a	cube	

apsi	 Solver	for	distribu4on	of	pollutant	

fpppp	 Quantum	chemistry	simula4on	

wave5	 Simula4on	of	plasma	physics	

2	

CINT2000	(Integer)	

1.  164.gzip	:	compression	
2.  175.vpr	:	FPGA	placement	/	rou4ng	
3.  176.gcc	:	C	compiler	
4.  181.mcf	:	Combinatorial	op4miza4on	
5.  186.craly	:	Chess	playing	
6.  197.parser	:	Word	processing	
7.  252.con	:	Computer	visualiza4on	
8.  253.perlbmk	:	PERL	interpreter	

9.  254.gap	:	Group	theory	interpreter	
10. 255.vortex	:	Object-oriented	database	
11. 256.bzip2	:	Compression	
12. 300.twolf	:	VLSI	Place	/	Route	

34	

2	

CFP2000	(Floa)ng-Point)	

1.  168.wupwise:	Quantum	dynamics	
2.  171.swim	:	Shallow	water	modeling	
3.  172.mgrid	:	Mul4-grid	solver	
4.  173.applu	:	Differen4al	equa4on	solver	
5.  177.mesa	:	3D	graphics	library	
6.  178.galgel	:	Fluid	dynamics	
7.  179.art	:	Neural	networks	
8.  183.equake	:	Seismic	wave	simula4on	

9.  187.facerec	:	Face	recogni4on	
10. 188.ammp	:	Computa4onal	chemistry	
11. 189.lucas	:	Primality	tes4ng	
12. 191.fma3d	:	Finite-element	simula4on	
13. 200.sixtrack	:	Nuclear	accelerator	
14. 301.apsi	:	Pollutant	distribu4on	

35	 2	

(b)	Kernel	Benchmarks	

•  Here	key	computa4onally-intensive	pieces	of	code	are	extracted	from	real	
programs	(e.g.	Fast	Fourier	transform,	matrix	factoriza4on,	etc.).	

•  Unlike	real	programs,	no	user	would	be	running	the	kernel	benchmarks.	
–  They	are	used	solely	to	evaluate	performance.	

•  Kernels	are	best	used	to	isolate	performance	of	specific	features	of	a	
machine	and	evaluate	them.	

•  Examples:	Livermore	Loops,	Linpack.	
–  Some	compilers	were	reported	to	have	been	using	benchmark	specific	

op4miza4ons	so	as	to	give	the	machine	a	good	ra4ng.	

36	

24/07/17	

7	

2	

(c)	Toy	Benchmarks	

•  These	are	small	pieces	of	code,	typically	between	10	and	100	lines.	
•  They	are	convenient	and	can	be	run	easily	on	any	computer.	
•  They	have	limited	u4lity	in	benchmarking	and	hence	sparingly	used.	
•  Examples:	Sieve	of	Eratosthenes,	quicksort,	etc.	

37	 2	

(d)	Synthe)c	Benchmarks	

•  Somewhat	similar	in	principle	to	kernel	benchmarks.	
–  They	try	to	match	the	average	frequency	of	opera4ons	and	operands	of	a	

large	set	of	programs.	

•  Synthe4c	benchmarks	are	further	removed	from	reality	than	kernels,	as	
kernel	code	is	extracted	from	real	programs,	while	synthe4c	code	is	
created	ar4ficially	to	match	an	average	execu4on	profile.	

•  Examples:	Whetstone,	Dhrystone,	etc.	
–  These	are	not	real	programs.	

•  Some	drawbacks	with	synthe4c	benchmarks	are	discussed	next.	

38	

2	

•  Compilers	and	hardware	op4miza4ons	can	ar4ficially	inflate	performance	of	
these	benchmarks	but	not	of	real	programs.	
–  Op4mizing	compilers	can	discard	more	than	25%	of	Dhrystone	code	(e.g.	loops	

that	are	executed	once).	
–  Compilers	can	op4mize	specific	code	sequences	that	appear	in,	say,	Whetstone	

benchmark.	
												X		=		SQRT	(EXP	(ALOG	(X)	/	T1))			à			X		=		EXP	(ALOG	(X)	/	(2	*	T1))	

39	

Weighted Arithmetic Mean =

nX

i=1

(Wi ⇥XTi)

Normalized Geometric Mean =

n

vuut
nY

i=1

XTRi

Normalized Arithmetic Mean =

1

n

nX

i=1

XTRi

p
eX = e

X
2

2

2	

END	OF	LECTURE	13	

40	

2	41	

Lecture 14: SUMMARIZING PERFORMANCE RESULTS

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Introduc)on	

•  We	have	seen	the	need	for	using	real	programs	for	benchmarking.	
–  Benchmarks	consist	of	a	suite	of	programs.	

•  How	to	consolidate	all	the	run	4mes	and	come	up	with	a	single	metric	that	
can	be	used	for	comparison?	
–  Machine	X	may	run	benchmark	B1	faster,	while	machine	Y	may	run	benchmark	

B2	faster.	
–  Is	X	faster	than	Y,	or	is	Y	faster	than	X?	

•  We	shall	be	discussing	several	measures	that	are	used	for	consolida4on.	

42	

24/07/17	

8	

2	

What	about	Reproducibility?	

•  Actual	run	4me	of	a	program	on	a	machine	depends	on	so	many	factors.	
–  Degree	of	mul4programming,	disk	usage,	compiler	op4miza4on,	etc.	

•  Reproducibility	of	the	experiments	is	very	important.	
–  Anyone	should	be	able	to	run	the	experiment	and	get	the	same	results.	
–  Benchmarks	must	therefore	specify	the	execu4on	environment	very	clearly.	

•  Example:-	SPEC	benchmarks	men4on	details	such	as:	
–  Extensive	descrip4on	of	the	computer	and	the	compiler	flags.	
–  Hardware,	solware	and	baseline	tuning	parameters.	

43	 2	

How	to	Summarize	Performance	Results?	
•  The	choice	of	a	good	benchmark	suite	that	relates	to	real	applica4ons	is	

essen4al	to	measuring	performance.	
•  For	a	single	program,	it	is	very	easy	to	say	which	computer	runs	faster.	
•  However,	when	there	are	mul4ple	programs,	the	comparison	may	not	be	

so	straighuorward.	

44	

CPU	A	(in	secs)	 CPU	B	(in	secs)	 CPU	C	(in	secs)	

Program	P1		 1	 10	 25	

Program	P2	 500	 250	 10	

Total	Time	 501	 260	 35	

An	example	

2	

•  We	can	make	the	following	statements,	which	may	depict	a	
confusing	picture	when	considered	together:	
–  A	is	10	4mes	faster	than	B	for	program	P1.	
–  B	is	2	4mes	faster	than	A	for	program	P2.	
–  A	is	25	4mes	faster	than	C	for	program	P1.	
–  C	is	50	4mes	faster	than	A	for	program	P2.	
–  B	is	2.5	4mes	faster	than	C	for	program	P1.	
–  C	is	25	4mes	faster	than	B	for	program	P2.	

45	

CPU	A	(in	secs)	 CPU	B	(in	secs)	 CPU	C	(in	secs)	

Program	P1		 1	 10	 25	

Program	P2	 500	 250	 10	

Total	Time	 501	 260	 35	

2	

(a)	Total	Execu)on	Time	

•  The	simplest	approach	to	summarize	the	rela4ve	performances	is	to	look	at	
the	total	execu4on	4mes	of	the	two	programs.	
–  CPU	A	:	501,	CPU	B:	260,	CPU	C:	35.	

•  Based	on	this	measure,	we	can	make	the	following	comments:	
–  B	is	501	/	260	=	1.93	4mes	faster	than	A	for	the	two	programs.	
–  C	is	501	/	35	=	14.31	4mes	faster	than	A	for	the	two	programs.	
–  C	is	260	/	35	=	7.43	4mes	faster	than	B	for	the	two	programs.	

•  If	the	actual	workload	consists	of	running	P1	and	P2	unequal	number	of	
4mes,	this	measure	will	not	give	the	correct	result.	

46	

2	

•  Arithme4c	Mean:	
–  Defined	as	the	average	execu4on	4me	for	all	the	programs	in	the	

benchmark	suite.	
–  If	XTi	denotes	the	execu4on	4me	of	the	i-th	program,	and	there	are	n	

programs,	we	can	write	

47	

CPU clock cycles =

nX

i=1

(ICi ⇥ CPIi)

Instruction Count (IC) =

nX

i=1

ICi

CPI =

Pn
i=1 (ICi ⇥ CPIi)

IC

=

nX

i=1

✓
ICi

IC
⇥ CPIi

◆

Fi =
ICi

IC

CPI =

nX

i=1

(Fi ⇥ CPIi)

Arithmetic Mean =

1

n

nX

i=1

XTi

1
2	

(b)	Weighted	Execu)on	Time	

•  If	the	programs	cons4tu4ng	the	workload	do	not	run	equally,	we	can	add	a	
weightage	factor	to	every	program	and	carry	out	the	calcula4on	accordingly.	
–  Thus,	if	40%	of	the	tasks	in	the	workload	is	program	P1,	and	60%	is	program	P2,	

we	can	define	the	corresponding	weights	as	W1	=	0.4,	and	W2	=	0.6.	

•  Two	alternate	approaches	are	possible:	
i.  Weighted	Arithme4c	Mean	
ii.  Normalized	Execu4on	Time	

48	

24/07/17	

9	

2	

•  Weighted	Arithme4c	Mean	(WAM):	
–  It	is	computed	as	the	sum	of	the	products	of	weigh4ng	factors	and	

execu4on	4mes.	
–  If	Wi	denotes	the	weigh4ng	factor	of	program	i,	we	can	write	

49	

Weighted Arithmetic Mean =

nX

i=1

(Wi ⇥XTi)

Geometric Mean =

n

vuut
nY

i=1

XTRi

2

2	

Example	1	

•  If	W1	=	0.50	and	W2	=	0.50,		we	get		WAMA	=	250.5,	WAMB	=	130,	WAMC	=	17.5	

•  If	W1	=	0.90	and	W2	=	0.10,	we	get			WAMA	=	50.9,			WAMB	=	34,			WAMC	=	23.5	

•  If	W1	=	0.10	and	W2	=	0.90,	we	get		WAMA	=	450.1,		WAMB	=	226,	WAMC	=	11.5	

50	

CPU	A	(in	secs)	 CPU	B	(in	secs)	 CPU	C	(in	secs)	

Program	P1		 1	 10	 25	

Program	P2	 500	 250	 10	

Total	Time	 501	 260	 35	

2	

(c)	Normalized	Execu)on	Time	

•  As	an	alterna4ve,	we	can	normalize	all	execu4on	4mes	to	a	reference	
machine,	and	then	take	the	average	of	the	normalized	execu4on	4mes.	
–  Followed	in	the	SPEC	benchmarks,	where	a	SPARCsta4on	is	taken	as	the	

reference	machine.	

•  Average	normalized	execu4on	4me	can	be	expressed	as	either	an	arithme4c	
or	geometric	mean.	

51	

Weighted Arithmetic Mean =

nX

i=1

(Wi ⇥XTi)

Normalized Geometric Mean =

n

vuut
nY

i=1

XTRi

Normalized Arithmetic Mean =

1

n

nX

i=1

XTRi

2

2	52	

Weighted Arithmetic Mean =

nX

i=1

(Wi ⇥XTi)

Normalized Geometric Mean =

n

vuut
nY

i=1

XTRi

Normalized Arithmetic Mean =

1

n

nX

i=1

XTRi

2

•  Here,	XTRi	denotes	the	execu4on	4me	for	the	i-th	program,	normalized	to	the	
reference	machine.	

2	

Example	2	

53	

Normalized	to	A	 Normalized	to	B	 Normalized	to	C	

A	 B	 C	 A	 B	 C	 A	 B	 C	

Program	P1	 1.0	 10.0	 25.0	 0.1	 1.0	 2.5	 0.04	 0.4	 1.0	

Program	P2	 1.0	 0.5	 0.02	 2.0	 1.0	 0.04	 50.0	 25.0	 1.0	

Arithme4c	mean	 1.0	 5.25	 12.51	 1.05	 1.0	 1.27	 25.02	 12.7	 1.0	

Geometric	mean	 1.0	 2.24	 0.71	 0.45	 1.0	 0.32	 1.41	 3.16	 1.0	

CPU	A	(in	secs)	 CPU	B	(in	secs)	 CPU	C	(in	secs)	

Program	P1		 1	 10	 25	

Program	P2	 500	 250	 10	

Total	Time	 501	 260	 35	

2	

•  Summary:	
–  In	contrast	to	arithme4c	means,	geometric	means	of	normalized	

execu4on	4mes	are	consistent	no	macer	which	machine	is	the	
reference.	

–  Hence,	the	arithme4c	mean	should	not	be	used	to	average	normalized	
execu4on	4mes.	

–  One	drawback	of	geometric	mean	is	that	they	do	not	predict	
execu4on	4mes.	
•  Also	can	encourage	hardware	and	solware	designers	to	focus	their	
acen4on	to	those	benchmarks	where	performance	is	easiest	to	improve		
rather	than	the	ones	that	are	the	slowest.	

54	

24/07/17	

10	

2	

END	OF	LECTURE	14	

55	 2	56	

Lecture 14: AMADAHL’S LAW (PART 1)

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Introduc)on	

57	

Gene	Amadahl	

•  Amadahl’s	law	was	established	in	1967	by	Gene	
Amadahl.	
•  Basically	provides	an	understanding	on	scaling,	
limita4ons	and	economics	of	parallel	compu4ng.	
•  Forms	the	basis	for	quan4ta4ve	principles	in	
computer	system	design.	
•  Can	be	applied	to	other	applica4on	domains	as	well.	

2	

What	is	Amadahl’s	Law?	
•  It	can	be	used	to	find	the	maximum	expected	improvement	of	an	overall	

system	when	only	part	of	the	system	is	improved.	
•  It	basically	states	that	the	performance	improvement	to	be	gained	from	

using	some	faster	mode	of	execu4on	is	limited	by	the	frac4on	of	the	4me	
the	faster	mode	can	be	used.	

•  Very	useful	to	check	whether	any	proposed	improvement	can	provide	
expected	return.	
–  Used	by	computer	designers	to	enhance	only	those	architectural	features	that	

result	in	reasonable	performance	improvement.	
–  Referred	to	as	quan6ta6ve	principles	in	design.	

58	

2	

•  Amadahl’s	law	demonstrates	the	law	of	diminishing	returns.	
•  An	example:	

–  Suppose	we	are	improving	a	part	of	the	computer	system	that	affects	
only	25%	of	the	overall	task.	

–  The	improvement	can	be	very	liUle	or	extremely	large.	
–  With	“infinite”	speedup,	the	25%	of	the	task	can	be	done	in	“zero”	4me.	
–  Maximum	possible	speedup		=		XTorig	/	XTnew		=		1	/	(1	–	0.25)		=		1.33	

59	

We	can	never	get	a	speedup	of	more	than	1.33	

2	

•  Amadahl’s	law	concerns	the	speedup	achievable	from	an	improvement	in	
computa4on	that	affects	a	frac4on	F	of	the	computa4on,	where	the	
improvement	has	a	speedup	of	S.	

60	

1	–	F		 F	

1	–	F		 F	/	S	

Before	improvement	

Aaer	improvement	

24/07/17	

11	

2	

•  Execu4on	4me	before	improvement: 	(1	–	F)	+	F		=		1	
•  Execu4on	4me	aler	improvement: 	(1	–	F)	+	F	/	S	
•  Speedup	obtained:	
																																								1	
																														(1	–	F)	+	F	/	S	

•  As	S	à	∞,		Speedup	à	1	/	(1	–	F)	
–  The	frac4on	F	limits	the	maximum	speedup	that	can	be	obtained.	

61	

Speedup	=	

2	

•  Illustra4on	of	law	of	diminishing	returns:	
–  Let	F	=	0.25.	
–  The	table	shows	the	speedup	(=	1	/	(1	–	F	+	F	/	S)	for	various	values	of	S.	

62	

S	 Speedup	

1	 1.00	

2	 1.14	

5	 1.25	

10	 1.29	

S	 Speedup	

50	 1.32	

100	 1.33	

1000	 1.33	

100,000	 1.33	

1	/	(1	–	0.25)		=	1.33			

2	

•  Illustra4on	of	law	of	diminishing	returns:	
–  Let	F	=	0.75.	
–  The	table	shows	the	speedup	for	various	values	of	S.	

63	

S	 Speedup	

1	 1.00	

2	 1.60	

5	 2.50	

10	 3.08	

S	 Speedup	

50	 3.77	

100	 3.88	

1000	 3.99	

100,000	 4.00	

1	/	(1	–	0.75)		=	4.00			

2	

Design	Alterna)ve	using	Amadahl’s	law	

64	

Loop	1	

Loop	2	

500	lines	

20	lines	

10%	of	total	execu4on	4me	

90%	of	total	execu4on	4me	

2	

•  Some	examples:	
–  We	make	10%	of	a	program	90X	faster,	speedup	=		1	/	(0.9	+	0.1	/	90)						=	1.11	
–  We	make	90%	of	a	program	10X	faster,	speedup	=		1	/	(0.1	+	0.9	/	10)						=	5.26	
–  We	make	25%	of	a	program	25X	faster,	speedup	=		1	/	(0.75	+	0.25	/	25)	=	1.32	
–  We	make	50%	of	a	program	20X	faster,	speedup	=		1	/	(0.5	+	0.5	/	20)					=	1.90	
–  We	make	90%	of	a	program	50X	faster,	speedup	=		1	/	(0.1	+	0.9	/	50)					=	8.47	

65	 2	

Example	1	
•  Suppose	we	are	running	a	set	of	programs	on	a	RISC	processor,	for	which	the	

following	instruc4on	mix	is	observed:	

We	carry	out	a	design	enhancement	by	which	the	CPI	of	Load	instruc4ons	
reduces	from	5	to	2.	What	will	be	the	overall	performance	improvement?	

66	

Opera)on	 Frequency	 CPIi	
Load	 20	%	 5	

Store	 8	%	 3	

ALU	 60	%	 1	

Branch	 12	%	 2	

Wi	*	CPIi	 %	Time	
1.00	 0.48	

0.24	 0.12	

0.60	 0.29	

0.24	 0.11	

CPI	=	2.08	

1	/	2.08	

24/07/17	

12	

2	

Frac4on	enhanced		F		=		0.48	
Frac4on	unaffected		1	–	F		=		1	–	0.48		=		0.52	
Enhancement	factor		S		=		5	/	2		=	2.5	
Therefore,	speedup	is	
																																			1																																								1	
																									(1	–	F)	+	F	/	S															0.52	+	0.48	/	2.5	

67	

=		1.40	=		

2	

•  Alternate	way	of	calcula4on:	
–  Old	CPI		=		2.08	
–  New	CPI		=		0.20	*	2	+	0.08	*	3		+		0.60	*	1		+	0.12	*	2		=		1.48	

68	

Weighted Arithmetic Mean =

nX

i=1

(W

i

⇥XT

i

)

Normalized Geometric Mean =

n

vuut
nY

i=1

XTR

i

Normalized Arithmetic Mean =

1

n

nX

i=1

XTR

i

p
e

X

= e

X
2

Speedup =

XT

orig

XT

new

=

IC ⇤ CPI

old

⇤ C
IC ⇤ CPI

new

⇤ C

=

CPI

old

CPI

new

=

2.08

1.48

= 1.40

2

2	

Example	2	

•  The	execu4on	4me	of	a	program	on	a	machine	is	found	to	be	50	seconds,	
out	of	which	42	seconds	is	consumed	by	mul4ply	opera4ons.	It	is	required	to	
make	the	program	run	5	4mes	faster.	By	how	much	must	the	speed	of	the	
mul4plier	be	improved?	

–  Here,		F	=	42	/	50	=	0.84	
–  According	to	Amadahl’s	law,	
															5		=		1	/	(0.16	+	0.84	/	S)	
								or,		0.80		+		4.2	/	S		=		1	
								or,		S		=		21	

69	 2	

Example	2a	

•  The	execu4on	4me	of	a	program	on	a	machine	is	found	to	be	50	seconds,	
out	of	which	42	seconds	is	consumed	by	mul4ply	opera4ons.	It	is	required	to	
make	the	program	run	8	4mes	faster.	By	how	much	must	the	speed	of	the	
mul4plier	be	improved?	

–  Here,		F	=	42	/	50	=	0.84	
–  According	to	Amadahl’s	law,	
															8		=		1	/	(0.16	+	0.84	/	S)	
								or,		1.28		+		6.72	/	S		=		1	
								or,		S		=		–	24		

70	

No	amount	to	speed	improvement	
in	the	mul)plier	can	achieve	this.	
Maximum	speedup	achievable:	
					1	/	(1	–	F)		=		6.25	

2	

Example	3	

•  Suppose	we	plan	to	upgrade	the	processor	of	a	web	server.	The	CPU	is	30	
4mes	faster	on	search	queries	than	the	old	processor.	The	old	processor	is	
busy	with	search	queries	80%	of	the	4me.	Es4mate	the	speedup	obtained	by	
the	upgrade.	

–  Here,	F	=	0.80		and		S	=	30	
–  Thus,	speedup		=		1	/	(0.20	+	0.80	/	30)		=		4.41	

71	 2	

END	OF	LECTURE	15	

72	

24/07/17	

13	

2	73	

Lecture 16: AMADAHL’S LAW (PART 2)

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Example	1	

•  The	total	execu4on	4me	of	a	typical	program	is	made	up	of	60%	of	CPU	4me	
and	40%	of	I/O	4me.	Which	of	the	following	alterna4ves	is	becer?	
a)  Increase	the	CPU	speed	by	50%	
b)  Reduce	the	I/O	4me	by	half	

					Assume	that	there	is	no	overlap	between	CPU	and	I/O	opera4ons.	

74	

CPU	 CPU	 CPU	I/O	 I/O	 I/O	

2	

•  Increase	CPU	speed	by	50%	
–  Here,	F	=	0.60		and		S	=	1.5	
–  Speedup		=		1	/	(0.40	+	0.60	/	1.5)		=		1.25	

•  Reduce	the	I/O	4me	by	half	
–  Here,	F	=	0.40		and		S	=	2	
–  Speedup		=		1	/	(0.60	+	0.40	/	2)		=		1.25	

Thus,	both	the	alterna)ves	result	in	the	same	speedup.	

75	 2	

Example	2	

•  Suppose	that	a	compute-intensive	bioinforma4cs	program	is	running	on	a	
given	machine	X,	which	takes	10	days	to	run.	The	program	spends	25%	of	its	
4me	doing	integer	instruc4ons,	and	40%	of	4me	doing	I/O.	Which	of	the	
following	two	alterna4ves	provides	a	becer	tradeoff?	
a)  Use	an	op4mizing	compiler	that	reduces	the	number	of	integer	instruc4ons	by	

30%	(assume	all	integer	instruc4ons	take	the	same	4me).	
b)  Op4mizing	the	I/O	subsystem	that	reduces	the	latency	of	I/O	opera4ons	from			

10	μsec	to	5	μsec	(that	is,	speedup	of	2).	

76	

2	

•  Alterna4ve	(a):	
–  Here,	F	=	0.25		and		S	=	100	/	70	
–  Speedup		=		1	/	(0.75	+	0.25	*	70	/	100)		=		1.08	

•  Alterna4ve	(b):	
–  Here,	F	=	0.40		and		S	=	2	
–  Speedup		=		1	/	(0.60	+	0.40	/	2)		=		1.25	

77	 2	

Amadahl’s	Law	Corollary	1	

•  Make	the	common	case	fast.	
–  Here	“common”	means	most	4me	consuming,	and	not	“most	frequent”.	
–  According	to	Amadahl’s	law,	improving	the	“uncommon”	case	will	not	

result	in	much	improvement.	
–  The	“common”	case	has	to	be	determined	through	experimenta4on	and	

profiling.	
•  When	op4miza4ons	are	carried	out,	a	case	that	was	common	earlier	may	
become	uncommon	later,	or	vice	versa.	

78	

24/07/17	

14	

2	

Amadahl’s	Law	Corollary	2	

•  Amadahl’s	law	for	latency	(L)	
–  By	defini4on,														Lnew		=		Lold	/	Speedup	
–  By	Amadahl’s	law,						Lnew		=		Lold	*	((1	–	F)	+	F	/	S)	
–  We	can	write:	

79	

Lnew		=		Lold	*	F	/	S		+		Lold	*	(1	–	F)	

2	

Amadahl’s	Non-Corollary	

•  Amadahl’s	law	does	not	bound	slowdown.	
–  Things	can	get	arbitrarily	slow	if	we	hurt	the	non-common	case	too	much.	

•  Example:		Suppose	F	=	0.01		and		Lold	=	1	

–  Case	1:		S=	0.001			(1000	4mes	worse)	
									Lnew		=		Lold	*	0.01	/	0.001		+		Lold	*	0.99		=		10	*	Lold	

–  Case	2:	S	=	0.00001			(105	4mes	worse)	
								Lnew		=		Lold	*	0.01	/	0.00001		+		Lold	*	0.99		=		1000	*	Lold	
	

80	

Lnew		=		Lold	*	F	/	S		+		Lold	*	(1	–	F)	

2	

Extension	to	Mul)ple	Enhancements	

•  Suppose	we	carry	out	mul4ple	op4miza4ons	to	a	program:	
–  Op4miza4on	1	speeds	up	a	frac4on	F1	of	the	program	by	a	factor	S1	
–  Op4miza4on	2	speeds	up	a	frac4on	F2	of	the	program	by	a	factor	S2	

81	

1	–	F1	–	F2		 F1	

1	–	F1	–	F2		 F1	/	S1	

F2	

F2	/	S2	
																													1	
(1	–	F1	–	F2)		+		F1	/	S1		+	F2	/	S2				

Speedup	

2	

•  In	the	calcula4on	as	shown,	it	is	assumed	that	F1	and	F2	are	disjoint.	
–  	S1	and	S2	do	not	apply	to	the	same	por4on	of	execu4on.	

•  If	it	is	not	so,	we	have	to	treat	the	overlap	as	a	separate	por4on	of	execu4on	
and	measure	its	speedup	independently.	
–  F1only	,	F2only	,	and	F1&2		with	speedups		S1only	,	S2only	,	and	S1&2		

82	

1	–	F1only	–	F2only	–	F1&2		 F1only	

1	–	F1only	–	F2only	–	F1&2		
F1only	/	
S1only	

F2only	

F2only	/	
S2only	

F1&2	

F1&2	/	
S1&2	

																																																					1	
(1	–	F1only	–	F2only	–	F1&2)		+		F1only	/	S1only		+	F2only	/	S2only	+	F1&2	/	S1&2				

Speedup		=	

2	

•  General	expression:	
–  Assume	m	enhancements	of	frac4ons	F1,	F2,	…,	Fm	by	factors	of	S1,	S2,	

…,	Sm	respec4vely.	

83	

Weighted Arithmetic Mean =

nX

i=1

(W

i

⇥XT

i

)

Normalized Geometric Mean =

n

vuut
nY

i=1

XTR

i

Normalized Arithmetic Mean =

1

n

nX

i=1

XTR

i

p
e

X

= e

X
2

Speedup =

XT

orig

XT

new

=

IC ⇤ CPI

old

⇤ C
IC ⇤ CPI

new

⇤ C

=

CPI

old

CPI

new

=

2.08

1.48

= 1.40

Speedup =

1

(1�
P

m

i=1 Fi

) +

P
m

i=1
Fi
Si

2

2	

Example	3	
•  Consider	an	example	of	memory	system.	

–  Main	memory	and	a	fast	memory	called	cache	
memory.	

–  Frequently	used	parts	of	program/data	are	kept	in	
cache	memory.	

–  Use	of	the	cache	memory	speeds	up	memory	
accesses	by	a	factor	of	8.	

–  Without	the	cache,	memory	opera4ons	consume	a	
frac4on	0.40	of	the	total	execu4on	4me.	

–  Es4mate	the	speedup.	

84	

Main	
Memory	

Cache	
Memory	CPU	

	1	
(1	–	F)		+		F	/	S					Speedup	=	 	1	

(1	–	0.4)		+		0.4	/	8					
=	 =		0.91	

Solu)on	

24/07/17	

15	

2	

Example	4	

•  Now	we	consider	two	levels	of	cache	memory,	L1-cache	and	L2-cache.	
						Assump4ons:	

–  Without	the	cache,	memory	opera4ons	take	30%	of	execu4on	4me.	
–  The	L1-cache	speeds	up	80%	of	memory	opera4ons	by	a	factor	of	4.	
–  The	L2-cache	speeds	up	50%	of	the	remaining	20%	memory	opera4ons	by	a	

factor	of	2.	

						We	want	to	find	out	the	overall	speedup.	

85	 2	

•  Solu4on:	
–  Memory	opera4ons	=	0.3	
–  FL1		=		0.3	*	0.8		=		0.24	
–  SL1		=		4	
–  FL2		=		0.3	*	(1	–	0.8)	*	0.5		=		0.03	
–  SL2		=		2	

86	

																												1	
(1	–	FL1	–	FL2)		+		FL1	/	SL1		+	FL2	/	SL2				

Speedup	

																															1	
(1	–	0.24	–	0.03)		+		0.24	/	4		+	0.03	/	2				

=			1.24	

2	

END	OF	LECTURE	16	

87	

