

- Suppose we want to multiply F1 = 270.75 and F2 = -2.375
 - $F1 = (270.75)_{10} = (100001110.11)_2 = 1.0000111011 \times 2^8$
 - $F2 = (-2.375)_{10} = (-10.011)_2 = -1.0011 \times 2^1$
- Add the exponents: 8 + 1 = 9
- Multiply the mantissas: 1.01000001100001
- Result: 1.01000001100001 x 2⁹

NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

12

FLOATING-POINT ARITHMETIC IN MIPS NPTEL ONLINE CERTIFICATION COURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA IIT KHARAGPUR The MIPS32 architecture defines the following floating-point registers (FPRs). - 32 32-bit floating-point registers F0 to F31, each of which is capable of storing a single-precision floating-point number. - Double-precision floating-point numbers can be stored in even-odd pairs of FPRs (e.g., (F0,F1), (F10,F11), etc.). In addition, there are five special-purpose FPU control registers. • NPTEL ONLINE CERTIFICATION COURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA **IIT KHARAGPUR**

- Rounding instructions:
 - Floating-point truncate
 - Floating-point ceiling
 - Floating-point floor
 - Floating-point round
- Format conversions:
 - Single-precision to double-precision
 - Double-precision to single-precision

NPTEL ONLINE CERTIFICATION COURSES

NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

21

(a) Degree of Over	lap
 Serial The next operation can start only after the previous operation finishes. 	
 Overlapped There is some overlap between successive operations. 	
 Pipelined Fine-grain overlap between successive operations. 	
IIT KHARAGPUR NPTEL ONLINE CERTIFICATION COURSES	NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA 44

- The *Reservation Table* is a data structure that represents the utilization pattern of successive stages in a synchronous pipeline.
 Basically a space-time diagram of the pipeline
 - Basically a space-time diagram of the pipeline that shows precedence relationships among pipeline stages.
 - X-axis shows the time steps
 - Y-axis shows the stages
 - Number of columns give evaluation time.
 - The reservation table for a 4-stage linear pipeline is shown.

NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

3

Δ

1 2

Х

Х

 S_1

 S_2

NPTEL ONLINE CERTIFICATION COURSES

24

Sr	beedup and Efficie	ncy
Some notations: τ :: clock period of th t _i :: time delay of the	e pipeline circuitry in stage S _i	
d _L :: delay of a latch Maximum stage delay Thus	$\tau_m = \max \{t_i\}$	
Pipeline frequency — If one result is exp	$f = 1 / \tau$ ected to come out of the pipeline	e every clock cycle <i>, f</i> will
represent the max	imum throughput of the pipeline	
IIT KHARAGPUR		TECHNOLOGY, MEGHALAYA

Exercise 1													
• For the following reconverien tables													
For the following reservation tables,													
a) What are the forbidden latencies?													
b) Show the state transition diagram.													
c) List all the simple cycles and greedy cycles.													
d) Determine the optimal constant latency cycle, and the MAL.													
e) Determine the pipeline throughput, for $\tau = 20$ ns.													
1 2 3 4	1 2 3 4 1 2 3 4 5 6 7												
S ₁ X X S ₁	х		x				x						
S ₂ X S ₂		Х			Х								
S ₃ X S ₃	S ₃ X S ₃ X X X												
	I COU	RSES			ĺ) N/	ATIONAL INSTITUTE OF CHNOLOGY, MEGHALA 66	YA				

NPTEL ONLINE CERTIFICATION COURSES

IIT KHARAGPUR

NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

Linear Pipeline for Floating-Point Add
Subtract Exponents Partial Shift Add Mantissa Leading 1 Partial Shift Shift Round Re normalize
r KHARAGPUR NPTEL ONLINE CERTIFICATION COURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

			Re	ser	vati	ion	Tab	le for Multiply
A B C D E	1 X	2 X	3 X X	4 X	5 X	6	7 X	 Forbidden latencies: 1, 2 Collision Vector: (0 0 0 0 1 1) MAL = ?
F G H	IT KHAR/	AGPUR				NPTE CERTI		NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA
diana diana					بيو دريد.			

_					Re	ese	erv	va	tio	on	Table for Addition						
		1	2	3	4	5	6	7	8	9	Eorbidden latencies: 1						
	Α	Y									 Collision Vector: (0 0 0 0 1) 						
	В										• MAL = ?						
	С				Υ												
	D									Υ							
	Е								Υ								
	F		Υ	Υ													
	G					Υ											
	Н						Υ	Υ									
L																	
										NPT CER	ONLINE ICATION COURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAY 84						

