
02/09/17	

1	

2	1	

Lecture 38: FLOATING-POINT NUMBERS

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Represen'ng	Frac'onal	Numbers	

•  A	binary	number	with	frac7onal	part	

							B	=		bn-1	bn-2	…..b1	b0	.	b-1	b-2	…..	b-m	
corresponds	to	the	decimal	number	
						D	=			Σ				bi	2i	

•  Also	called	fixed-point	numbers.	
–  The	posi7on	of	the	radix	point	is	fixed.	

2	

i	=	-m		

n-1		
If	the	radix	point	is	allowed	to	
move,	we	call	it	a	floa7ng-point	
representa7on.	

02/09/17	

2	

2	

Some	Examples	

1011.1						è		1x23	+	0x22	+	1x21	+	1x20	+	1x2-1				 	=			11.5	
101.11						è		1x22	+	0x21	+	1x20	+	1x2-1	+	1x2-2			 	=				5.75	
10.111						è		1x21	+	0x20	+	1x2-1	+	1x2-2		+	1x2-3		 	=				2.875	

Some	Observa7ons:	
•  ShiN	right	by	1	bit	means	divide	by	2	
•  ShiN	leN	by	1	bit	means	mul7ply	by	2	
•  Numbers	of	the	form	0.111111…2	has	a	value	less	than	1.0	(one).	
	

3	

2	

Limita'ons	of	Representa'on	
•  In	the	frac7onal	part,	we	can	only	represent	numbers	of	the	form	x/2k	exactly.	

–  Other	numbers	have	repea7ng	bit	representa7ons	(i.e.	never	converge).	
•  Examples:	

		3/4				=				0.11	
		7/8				=				0.111	
		5/8				=				0.101	
		1/3				=				0.10101010101	[01]	….	
		1/5				=				0.001100110011	[0011]	….	
		1/10		=				0.0001100110011	[0011]	….	

4	

•  More	the	number	of	bits,	more	
accurate	is	the	representa7on.	

•  We	some7mes	see:	(1/3)*3	≠	1.	

02/09/17	

3	

2	

Floa'ng-Point	Number	Representa'on	
(IEEE-754)	

•  For	represen7ng	numbers	with	frac7onal	parts,	we	can	assume	that	the	
frac7onal	point	is	somewhere	in	between	the	number	(say,	n	bits	in	integer	
part,	m	bits	in	frac7on	part).							à		Fixed-point	representa6on	
–  Lacks	flexibility.	
–  Cannot	be	used	to	represent	very	small	or	very	large	numbers	(for	example:					

2.53	x	10-26,	1.7562	x	10+35,	etc.).	

•  Solu7on	::	use	floa7ng-point	number	representa7on.	
–  A	number	F	is	represented	as	a	triplet	<s,	M,	E>	such	that	
								F		=		(-1)s	M	x	2E	

5	

2	

F		=		(-1)s	M	x	2E	

•  s	is	the	sign	bit	indica7ng	whether	the	number	is	nega7ve	(=1)	or	posi7ve	(=0).	
•  M	is	called	the	man6ssa,	and	is	normally	a	frac7on	in	the	range	[1.0,2.0].	
•  E	is	called	the	exponent,	which	weights	the	number	by	power	of	2.	

Encoding:	
•  Single-precision	numbers: 	total	32	bits,	E	8	bits,	M	23	bits	
•  Double-precision	numbers: 	total	64	bits,	E	11	bits,	M	52	bits	

6	

s	 E	 M	

02/09/17	

4	

2	

Points	to	Note	
•  The	number	of	significant	digits	depends	on	the	number	of	bits	in	M.	

–  7	significant	digits	for	24-bit	man7ssa	(23	bits	+	1	implied	bit).	

•  The	range	of	the	number	depends	on	the	number	of	bits	in	E.	
–  1038		to		10-38		for	8-bit	exponent.	

7	

How	many	significant	digits?	
		224	=	10x	
		24	log102	=	x	log1010	
		x	=	7.2			--		7	significant	decimal	places	

Range	of	exponent?	
		2127	=	10y	
		127	log102	=	y	log1010	
		y	=38.1			--		maximum	exponent	value				
																						38	(in	decimal)	

2	

“Normalized”	Representa'on	

•  We	shall	now	see	how	E	and	M	are	actually	encoded.	
•  Assume	that	the	actual	exponent	of	the	number	is	EXP	(i.e.	number	is		M	x	2EXP).	
•  Permissible	range	of	E:		1	≤	E	≤	254			(the	all-0	and	all-1	paderns	are	not	allowed).	
•  Encoding	of	the	exponent	E:	

–  The	exponent	is	encoded	as	a	biased	value:			E		=		EXP	+	BIAS	
					where	BIAS	=	127			(28-1	–	1)		for	single-precision,	and		
																	BIAS	=	1023	(211-1	–	1)	for	double-precision.	
	

8	

02/09/17	

5	

2	

•  Encoding	of	the	man'ssa	M:	
–  The	man7ssa	is	coded	with	an	implied	leading	1	(i.e.	in	24	bits).	
										M		=		1	.	xxxx...x	
–  Here,	xxxx…x	denotes	the	bits	that	are	actually	stored	for	the	man7ssa.	We	get	

the	extra	leading	bit	for	free.	
–  When	xxxx…x	=	0000…0,	M	is	minimum	(=	1.0).	
–  When	xxxx…x	=	1111…1,	M	is	maximum	(=	2.0	–	ε).	

9	

2	

An	Encoding	Example	

•  Consider	the	number	F	=	15335	
		1533510		=		111011111001112		=		1.1101111100111	x	213	
	

•  Man7ssa	will	be	stored	as: 					M	=	1101111100111	00000000002	

•  Here,	EXP	=	13,		BIAS	=	127.					è			E	=	13	+	127	=	140		=		100011002	

10	

0	 10001100	 11011111001110000000000	 466F9C00	in	hex	

02/09/17	

6	

2	

Another	Encoding	Example	

•  Consider	the	number	F	=	-3.75	
		-3.7510		=		-11.112		=		-1.111	x	21	
	

•  Man7ssa	will	be	stored	as: 					M	=	111000000000000000000002	

•  Here,	EXP	=	1,		BIAS	=	127.					è			E	=	1	+	127	=	128		=		100000002	

11	

1	 10000000	 11100000000000000000000	 40700000	in	hex	

2	

Special	Values	

•  When	E	=	000…0	
–  M	=	000…0	represents	the	value	0.	
–  M	≠	000…0	represents	numbers	very	close	to	0.	

•  When	E	=	111…1	
–  M	=	000…0	represents	the	value	∞	(infinity).	
–  M	≠	000…0	represents	Not-a-Number	(NaN).	

12	

NaN	represents	cases	
when	no	numeric	value	
can	be	determined,	like	
unini7alized	values,	∞*0,	
∞-∞,	square	root	of	a	
nega7ve	number,	etc.	

Also	referred	to	as	de-
normalized	numbers.	

Zero	is	represented	by	the	
all-zero	string.	

02/09/17	

7	

2	

Summary	of	Number	Encodings	

13	

NaN	NaN	

+∞	-∞	

-0	

+Denorm	 +Normalized	-Denorm	-Normalized	

+0	

Denormal	numbers	have	very	small	magnitudes	(close	to	0)	such	that	trying	to	
normalize	them	will	lead	to	an	exponent	that	is	below	the	minimum	possible	value.	
•  Man7ssa	with	leading	0’s	and	exponent	field	equal	to	zero.	
•  Number	of	significant	digits	gets	reduced	in	the	process.	

2	

Rounding	

•  Suppose	we	are	adding	two	numbers	(say,	in	single-precision).	
–  We	add	the	man7ssa	values	aNer	shiNing	one	of	them	right	for	exponent	

alignment.	
–  We	take	the	first	23	bits	of	the	sum,	and	discard	the	residue	R	(beyond	32	bits).	

•  IEEE-754	format	supports	four	rounding	modes:	
a)  Trunca7on	
b)  Round	to	+∞ 	(similar	to	ceiling	func7on)	
c)  Round	to	-∞ 	(similar	to	floor	func7on)	
d)  Round	to	nearest	

14	

02/09/17	

8	

2	

•  To	implement	rounding,	two	temporary	bits	are	maintained:	
–  Round	Bit	(r):		This	is	equal	to	the	MSB	of	the	residue	R.	
–  S6cky	Bit	(s):			This	the	logical	OR	of	the	rest	of	the	bits	of	the	residue	R.	

•  Decisions	regarding	rounding	can	be	taken	based	on	these	bits:	
a)  R	>	0: 	If		r	+	s	=	1	
b)  R	=	0.5: 	If		r.s’	=	1	
c)  R	>	0.5: 	If		r.s	=	1 	 	//	‘+’	is	logical	OR,	‘.’	is	logical	AND	

•  Renormaliza7on	aNer	Rounding:	
–  If	the	process	of	rounding	generates	a	result	that	is	not	in	normalized	form,	then	

we	need	to	re-normalize	the	result.		

15	

2	

Some	Exercises	

1.  Decode	the	following	single-precision	floa7ng-point	numbers.	
a)  0011	1111	1000	0000	0000	0000	0000	0000	
b)  0100	0000	0110	0000	0000	0000	0000	0000	
c)  0100	1111	1101	0000	0000	0000	0000	0000	
d)  1000	0000	0000	0000	0000	0000	0000	0000	
e)  0111	1111	1000	0000	0000	0000	0000	0000	
f)  0111	1111	1101	0101	0101	0101	0101	0101	

16	

02/09/17	

9	

2	

END	OF	LECTURE	38	

17	

2	18	

Lecture 39: FLOATING-POINT ARITHMETIC

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

02/09/17	

10	

2	

Floa'ng	Point	Addi'on/Subtrac'on	

•  Two	numbers:		M1	x	2E1		and		M2	x	2E2	,		where	E1	>	E2	(say).	
•  Basic	steps:	

–  Select	the	number	with	the	smaller	exponent	(i.e.	E2)	and	shiN	its	
man7ssa	right	by	(E1-E2)	posi7ons.	

–  Set	the	exponent	of	the	result	equal	to	the	larger	exponent	(i.e.	E1).	
–  Carry	out	M1	±	M2,	and	determine	the	sign	of	the	result.	
–  Normalize	the	resul7ng	value,	if	necessary.	

19	

2	

Addi'on	Example	

•  Suppose	we	want	to	add		F1	=	270.75		and		F2	=	2.375	
											F1	=	(270.75)10		=		(100001110.11)2		=		1.0000111011	x	28	
											F2	=	(2.375)10		=		(10.011)2		=		1.0011	x	21	
•  ShiN	the	man7ssa	of	F2	right	by	8	–	1	=	7	posi7ons,	and	add:	
												1000	0111	0110	0000	0000	0000	
																													1	0011	0000	0000	0000	0000	000	
													1000	1000	1001	0000	0000	0000	0000	000	

•  Result:		1.00010001001	x	28		

20	

Residue	

02/09/17	

11	

2	

Subtrac'on	Example	
•  Suppose	we	want	to	subtract	F2	=	224	from	F1	=	270.75		
											F1	=	(270.75)10		=		(100001110.11)2		=		1.0000111011	x	28	
											F2	=	(224)10		=		(11100000)2		=		1.111	x	27	
•  ShiN	the	man7ssa	of	F2	right	by	8	–	7	=	1	posi7on,	and	subtract:	
												1000	0111	0110	0000	0000	0000	
															111	0000	0000	0000	0000	0000	000	
													0001	0111	0110	0000	0000	0000	000	

•  For	normaliza7on,	shiN	man7ssa	leN	3	posi7ons,	and	decrement	E	by	3.	
•  Result:		1.01110110	x	25		

21	

2	22	

02/09/17	

12	

2	

Floa'ng-Point	Mul'plica'on	

•  Two	numbers:		M1	x	2E1		and		M2	x	2E2		
•  Basic	steps:	

–  Add	the	exponents	E1	and	E2	and	subtract	the	BIAS.	
–  Mul7ply	M1	and	M2	and	determine	the	sign	of	the	result.	
–  Normalize	the	resul7ng	value,	if	necessary.	

23	

2	

Mul'plica'on	Example	

•  Suppose	we	want	to	mul7ply	F1	=	270.75		and		F2	=	-2.375	
														F1	=	(270.75)10		=		(100001110.11)2		=		1.0000111011	x	28	
														F2	=	(-2.375)10		=		(-10.011)2		=		-1.0011	x	21	
•  Add	the	exponents:		8	+	1	=	9	
•  Mul7ply	the	man7ssas:		1.01000001100001	
•  Result:		1.01000001100001	x	29	
	

24	

02/09/17	

13	

2	25	

s1	 E1	 M1	 s2	 E2	 M2	

8-bit	Adder	

9-bit	Subtractor	

24	x	24	Mul'plier	

Normalizer	

s3	 E3	 M3	

XOR	

s1	 s2	

1111111	

8	
8	

23	
23	

48	

8	

9	

23	8	

1	1	

2	

Floa'ng-Point	Division	

•  Two	numbers:		M1	x	2E1		and		M2	x	2E2		
•  Basic	steps:	

–  Subtract	the	exponents	E1	and	E2	and	add	the	BIAS.	
–  Divide	M1	by	M2	and	determine	the	sign	of	the	result.	
–  Normalize	the	resul7ng	value,	if	necessary.	

26	

02/09/17	

14	

2	

Division	Example	

•  Suppose	we	want	to	divide	F1	=	270.75		by	F2	=	-2.375	
														F1	=	(270.75)10		=		(100001110.11)2		=		1.0000111011	x	28	
														F2	=	(-2.375)10		=		(-10.011)2		=		-1.0011	x	21	
•  Subtract	the	exponents:		8	–	1	=	7	
•  Divide	the	man7ssas:		0.1110010	
•  Result:		0.1110010	x	27	

•  ANer	normaliza7on:		1.110010	x	26	
	

27	

2	28	

s1	 E1	 M1	 s2	 E2	 M2	

8-bit	Subtractor	

9-bit	Adder	

24-bit	Divider	

Normalizer	

s3	 E3	 M3	

XOR	

s1	 s2	

1111111	

8	
8	

23	
23	

48	

8	

9	

23	8	

1	1	

02/09/17	

15	

2	

FLOATING-POINT	ARITHMETIC	IN	MIPS	

29	

2	

•  The	MIPS32	architecture	defines	the	following	floa7ng-point	registers	(FPRs).	
–  32	32-bit	floa7ng-point	registers	F0	to	F31,	each	of	which	is	capable	of	storing	a	

single-precision	floa7ng-point	number.	
–  Double-precision	floa7ng-point	numbers	can	be	stored	in	even-odd	pairs	of	FPRs	

(e.g.,	(F0,F1),	(F10,F11),	etc.).	

•  In	addi7on,	there	are	five	special-purpose	FPU	control	registers.	

30	

02/09/17	

16	

2	31	

FIR	

FCCR	

FEXR	

FENR	

FCSR	

Special-purpose	
Registers	

F0	

F1	

F2	

F3	

F4	

F5	

F30	

F31	

FPRs	

.	.	.	

2	

Typical	Floa'ng	Point	Instruc'ons	in	MIPS	
•  Load	and	Store	instruc7ons	

–  Load	Word	from	memory	
–  Load	Double-word	from	memory	
–  Store	Word	to	memory	
–  Store	Double-word	to	memory	

•  Data	Movement	instruc7ons	
–  Move	data	between	integer	registers	and	floa7ng-point	registers	
–  Move	data	between	integer	registers	and	floa7ng-point	control	registers	

32	

02/09/17	

17	

2	

•  Arithme7c	instruc7ons	
–  Floa7ng-point	absolute	value	
–  Floa7ng-point	compare	
–  Floa7ng-point	negate	
–  Floa7ng-point	add	
–  Floa7ng-point	subtract	
–  Floa7ng-point	mul7ply	
–  Floa7ng-point	divide	
–  Floa7ng-point	square	root	
–  Floa7ng-point	mul7ply	add	
–  Floa7ng-point	mul7ply	subtract	

33	

2	

•  Rounding	instruc7ons:	
–  Floa7ng-point	truncate	
–  Floa7ng-point	ceiling	
–  Floa7ng-point	floor	
–  Floa7ng-point	round	

•  Format	conversions:	
–  Single-precision	to	double-precision	
–  Double-precision	to	single-precision	

34	

02/09/17	

18	

2	

Example:	Add	a	scalar	s	to	a	vector	A	

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 ADDI R1, R1, -8
 BNE R1, R2, Loop

35	

 for (i=1000; i>0; i--)
 A[i]= A[i] + s; R1:	ini7ally	points	to	A[1000]	

(F2,F3):	contains	the	scalar	s	
R2:	ini7alized	such	that	8(R2)	is	the	
							address	of	A[1]	
We	assume	double	precision	(64	bits):	

•  Numbers	stored	in	(F0,F1),	(F2,F3),	
and	(F4,F5).	

2	

END	OF	LECTURE	39	

36	

02/09/17	

19	

2	37	

Lecture 40: BASIC PIPELINING CONCEPTS

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

What	is	Pipelining?	

•  A	mechanism	for	overlapped	execu7on	of	several	input	sets	by	par77oning	
some	computa7on	into	a	set	of	k	sub-computa7ons	(or	stages).	
–  Very	nominal	increase	in	the	cost	of	implementa7on.	
–  Very	significant	speedup	(ideally,	k).	

•  Where	are	pipelining	used	in	a	computer	system?	
–  Instruc'on	execu'on:	Several	instruc7ons	executed	in	some	sequence.	
–  Arithme'c	computa'on:	Same	opera7on	carried	out	on	several	data	sets.	
–  Memory	access:	Several	memory	accesses	to	consecu7ve	loca7ons	are	made.	

38	

02/09/17	

20	

2	

A	Real-life	Example	

•  Suppose	you	have	built	a	machine	M	
that	can	wash	(W),	dry	(D),	and	iron	(R)	
clothes,	one	cloth	at	a	7me.	
– Total	7me	required	is	T.	

•  As	an	alterna7ve,	we	split	the	machine	
into	three	smaller	machines	MW,	MD	
and	MR,	which	can	perform	the	specific	
task	only.	
– Time	required	by	each	of	the	
smaller	machines	is	T/3	(say).	

39	

W	+	D	+	R	

T	

W	 D	 R	

T/3	T/3	 T/3	

For	N	clothes,	7me	T1	=	N.T	

For	N	clothes,	7me	T3	=	(2	+	N).T/3	

2	

How	does	the	pipeline	work?	

40	

W	

D	

R	

T/3	T/3	

Cloth-1	 Cloth-2	 Cloth-3	 Cloth-4	 Cloth-5	

Cloth-1	 Cloth-2	 Cloth-3	 Cloth-4	

Cloth-1	 Cloth-2	 Cloth-3	

T/3	 T/3	 T/3	
Time	

Finishing	7mes:	
•  Cloth-1	–	3.T/3	
•  Cloth-2	–	4.T/3	
•  Cloth-3	–	5.T/3	
•  …	
•  Cloth-N	–	(2	+	N).T/3	

02/09/17	

21	

2	

Extending	the	Concept	to	Processor	Pipeline	

•  The	same	concept	can	be	extended	to	hardware	pipelines.	
•  Suppose	we	want	to	adain	k	7mes	speedup	for	some	computa7on.	

–  Alterna've	1:	Replicate	the	hardware	k	7mes	à	cost	also	goes	up	k	7mes.	
–  Alterna've	2:	Split	the	computa7on	into	k	stages	à	very	nominal	cost	increase.	

•  Need	for	buffering:	
–  In	the	washing	example,	we	need	a	tray	between	machines	(W	&	D,	and	D	&	R)	to	

keep	the	cloth	temporarily	before	it	is	accepted	by	the	next	machine.	
–  Similarly	in	hardware	pipeline,	we	need	a	latch	between	successive	stages	to	hold	

the	intermediate	results	temporarily.	

41	

2	

Model	of	a	Synchronous	k-stage	Pipeline	

42	

•  The	latches	are	made	with	master-slave	flip-flops,	and	serve	the	purpose	of	isola7ng	
inputs	from	outputs.	

•  The	pipeline	stages	are	typically	combina7onal	circuits.	
•  When	Clock	is	applied,	all	latches	transfer	data	to	the	next	stage	simultaneously.	

S1	L	 S2	L	 Sk	L	L	 …	

Clock	

STAGE	1	 STAGE	2	 STAGE	k	

02/09/17	

22	

2	

Types	of	Pipelined	Processors	
•  Can	be	classified	based	on	various	parameters:	

a)  Degree	of	overlap	
•  Serial,	overlapped	or	pipelined	

b)  Depth	of	the	pipeline	
•  Shallow	or	Deep	

c)  Structure	of	the	pipeline	
•  Linear	or	Non-linear	

d)  How	the	opera7ons	are	scheduled	in	the	pipeline?	
•  Sta7c	or	Dynamic	

43	

2	

(a)	Degree	of	Overlap	

•  Serial	
–  The	next	opera7on	can	start	only	aNer	the	

previous	opera7on	finishes.	

•  Overlapped	
–  There	is	some	overlap	between	successive	

opera7ons.	

•  Pipelined	
–  Fine-grain	overlap	between	successive	

opera7ons.	

44	

02/09/17	

23	

2	

(b)	Depth	of	the	Pipeline	

•  Performance	of	a	pipeline	depends	on	the	
number	of	stages	and	how	they	can	be	
u7lized	without	conflict.	

•  Shallow	pipeline	is	one	with	fewer	number	
of	stages.	
–  Individual	stages	more	complex.	

•  Deep	pipeline	is	one	with	larger	number	of	
stages.	
–  Individual	stages	simpler.	

45	

Shallow	

Deep	

2	

(c)	Structure	of	the	Pipeline	

•  Linear	Pipeline:	The	stages	that	
cons7tute	the	pipeline	are	executed	
one	by	one	in	sequence	(say,	from	
leN	to	right).	

•  Non-linear	Pipeline:	The	stages	may	
not	execute	in	a	linear	sequence	(say,	
a	stage	may	execute	more	than	once	
for	a	given	data	set).	

46	

C	B	A	

C	B	A	

A	possible	sequence:	A,	B,	C,	B,	C,	A,	C,	A	

02/09/17	

24	

2	

(d)	Scheduling	Alterna'ves	

•  Sta7c	Pipeline:	
–  Same	sequence	of	pipeline	stages	are	executed	for	all	data	/	instruc7ons.	
–  If	one	data	/	instruc7on	stalls,	all	subsequent	ones	also	gets	delayed.	

•  Dynamic	Pipeline:	
–  Can	be	reconfigured	to	perform	variable	func7ons	at	different	7mes.	
–  Allows	feedforward	and	feedback	connec7ons	between	stages.	

47	

2	

Reserva'on	Table	
•  The	Reserva6on	Table	is	a	data	structure	that	

represents	the	u7liza7on	padern	of	successive	
stages	in	a	synchronous	pipeline.	
–  Basically	a	space-7me	diagram	of	the	pipeline	

that	shows	precedence	rela7onships	among	
pipeline	stages.	
•  X-axis	shows	the	7me	steps	
•  Y-axis	shows	the	stages	

–  Number	of	columns	give	evalua7on	7me.	
–  The	reserva7on	table	for	a	4-stage	linear	

pipeline	is	shown.	

48	

X	

X	

X	

X	

S1	
S2	
S3	
S4	

1	 2	 3	 4	

S1	 S2	 S3	 S3	

02/09/17	

25	

2	

•  Reserva7on	table	for	a	3-stage	dynamic	
mul7-func7on	pipeline	is	shown.	
–  Contains	feedforward	and	feedback	

connec7ons.	
–  Two	func7ons	X	and	Y.	

•  Some	characteris7cs:	
–  Mul6ple	X’s	in	a	row	::	repeated	use	of	

the	same	stage	in	different	cycles.	
–  Con6guous	X’s	in	a	row	::	extended	use	

of	a	stage	over	more	than	one	cycles.	
–  Mul6ple	X’s	in	a	column	::	mul7ple	

stages	are	used	in	parallel	during	a	clock	
cycle.	

49	

S3	S2	S1	

X	

X	 X	

X	

S1	
S2	
S3	

1	 2	 3	 4	
X	 X	

X	 X	

6	 7	 8	5	

1	 2	 3	 4	
Y	

Y	

Y	 Y	

S1	
S2	
S3	

Y	

Y	

6	5	

2	

Speedup	and	Efficiency	

Some	nota7ons:	
			 	τ		::		clock	period	of	the	pipeline	

	ti		::		7me	delay	of	the	circuitry	in	stage	Si	
	dL	::		delay	of	a	latch	

Maximum	stage	delay		 	τm	=	max	{ti}	
Thus, 		 	 		τ		=		τm	+	dL	
Pipeline	frequency 	 		f		=		1	/	τ	

–  If	one	result	is	expected	to	come	out	of	the	pipeline	every	clock	cycle,	f	will	
represent	the	maximum	throughput	of	the	pipeline.	

50	

02/09/17	

26	

2	

•  The	total	7me	to	process	N	data	sets	is	given	by	
	Tk		=		[(k	–	1)	+	N].τ	

•  For	an	equivalent	non-pipelined	processor	(i.e.	one	stage),	the	total	7me	is	
	T1		=		N.k.τ 	 	(ignoring	the	latch	overheads)	

	

•  Speedup	of	the	k-stage	pipeline	over	the	equivalent	non-pipelined	processor:	
	
Sk		=													=																																		=		

51	

(k	–	1)	τ	7me	required	to	fill	the	pipeline	
1	result	every	τ	7me	aNer	that	à	total	N.τ		

T1																				N.k.τ																								N.k	
Tk												k.τ	+	(N	–	1).τ												k	+	(N	–	1)	

As	N	à	∞,		Sk	à	k	

2	

•  Pipeline	efficiency:		
–  How	close	is	the	performance	to	its	ideal	value?	

												Ek		=																		=	

	
•  Pipeline	throughput:	

–  Number	of	opera7ons	completed	per	unit	7me.	

												Hk		=	

52	

Sk																				N																									
k													k	+	(N	–	1)												

N																				N																									
Tk											[k	+	(N	–	1)].τ												

=	

02/09/17	

27	

2	53	

0	

2	

4	

6	

8	

10	

12	

14	

1	 2	 4	 8	 16	 32	 64	 128	 256	

k	=	4	

k	=	8	

k	=	12	

Sp
ee
du

p	

Number	of	tasks	N	

2	

Clock	Skew	/	Jiher	/	Setup	'me	

•  The	minimum	clock	period	of	the	pipeline	must	sa7sfy	the	inequality:	
													τ		≥		tskew+jider		+		tlogic+setup	
•  Defini7ons:	

–  Skew:	Maximum	delay	difference	between	the	arrival	of	clock	signals	at	the	stage	
latches.	

–  Ji^er:	Maximum	delay	difference	between	the	arrival	of	clock	signal	at	the	same	latch.	
–  Logic	delay:	Maximum	delay	of	the	slowest	stage	in	the	pipeline.	
–  Setup	6me:	Minimum	7me	a	signal	needs	to	be	stable	at	the	input	of	a	latch	before	it	

can	be	captured.	

54	

02/09/17	

28	

2	

END	OF	LECTURE	40	

55	

2	56	

Lecture 41: PIPELINE SCHEDULING

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

02/09/17	

29	

2	

Scheduling	of	Non-linear	Pipelines	

57	

S3	S2	S1	

X	

X	 X	

X	

S1	
S2	
S3	

1	 2	 3	 4	
X	 X	

X	 X	

6	 7	 8	5	

1	 2	 3	 4	
Y	

Y	

Y	 Y	

S1	
S2	
S3	

Y	

Y	

6	5	
Two	opera'ons	X	and	Y	
•  X:	8	'me	steps	to	complete	
•  Y:	6	'me	steps	to	complete	

2	

•  Latency	Analysis:	
–  The	number	of	7me	units	between	two	ini7a7ons	of	a	pipeline	is	called	the	

latency	between	them.	
–  Any	adempt	by	two	or	more	ini7a7ons	to	use	the	same	pipeline	stage	at	the	same	

7me	will	cause	a	collision.	
–  The	latencies	that	can	cause	collision	are	called	forbidden	latencies.	

•  Distance	between	two	X’s	in	the	same	row	of	the	reserva7on	table.	

58	

X	

X	 X	

X	

S1	
S2	
S3	

1	 2	 3	 4	
X	 X	

X	 X	

6	 7	 8	5	

Forbidden	latencies:	2,	4,	5,	7	

1	 2	 3	 4	
Y	

Y	

Y	 Y	

S1	
S2	
S3	

Y	

Y	

6	5	

Forbidden	latencies:	2,	4	

02/09/17	

30	

2	

–  A	latency	sequence	is	a	sequence	of	permissible	non-forbidden	latencies	between	
successive	task	ini7a7ons.	

–  A	latency	cycle	is	a	latency	sequence	that	repeats	the	same	subsequence.		

59	

Func'on	X	
•  Forbidden	latencies:	2,	4,	5,	7	
•  Possible	latency	cycles:	

(1,	8)		=			1,	8,	1,	8,	…				(average	latency	=	4.5)	
(3)						=			3,	3,	3,	…									(average	latency	=	3.0)	
(6)						=			6,	6,	6,	…									(average	latency	=	6.0)	

Func'on	Y	
•  Forbidden	latencies:	2,	4	
•  Possible	latency	cycles:	

(1,	5)		=			1,	5,	1,	5,	…				(average	latency	=	3.0)	
(3)						=			3,	3,	3,	…									(average	latency	=	3.0)	
(3,	5)		=			3,	5,	3,	5,	…				(average	latency	=	4.0)	

Constant	Cycle	

2	

Collision	Free	Scheduling	
•  Main	objec7ve:	

–  Obtain	the	shortest	average	latency	between	ini7a7ons	without	causing	
collisions.	

•  We	define	a	collision	vector.	
–  If	the	reserva7on	table	has	n	columns,	the	maximum	forbidden	latency	is	m	≤	n-1.	
–  The	permissible	latencies	p	will	sa7sfy:		1	≤	p	≤	m-1.	
–  The	collision	vector	is	an	m-bit	binary	vector		C	=	(Cm	Cm-1	…	C2	C1),	where	Ci	=	1	if	

latency	i	causes	collision,	and	Ci	=	0	otherwise.	
–  Cm	is	always	1.	

60	

Func7on	X:		CX	=	(1011010)	
Func7on	Y:		CY	=	(1010)	

02/09/17	

31	

2	

•  From	the	collision	vector	(CV),	we	can	construct	a	state	diagram	specifying	
the	permissible	state	transi7ons	among	successive	ini7a7ons.	
–  The	collision	vector	corresponds	to	the	ini7al	state	of	the	pipeline.	
–  The	next	state	at	7me	t+p	is	obtained	by	shiNing	the	present	state	p-bits	to	

the	right	and	OR-ing	with	the	ini7al	collision	vector	C.	

61	

1	0	1	0	

1	0	1	1	 1	1	1	1	

3	 5+	

5+	

5+	1	

3	

1	0	1	1	0	1	0	

1	1	1	1	1	1	1	

3	 6	 8+	

8+	

8+	
1	

6	3	

1	0	1	1	0	1	1	

Func7on	X	
CV:	(1011010)	

Func7on	Y	
CV:	(1010)	

2	

•  From	the	state	diagram,	we	can	determine	latency	cycles	that	result	in	
minimum	average	latency	(MAL).	
–  In	a	simple	cycle,	a	state	appears	only	once.	
–  Some	of	the	simple	cycles	are	greedy	cycles,	which	are	formed	only	using	

outgoing	edges	with	minimum	latencies.	

62	

Func7on	X:	
•  Simple	cycles:		(3),	(6),	(8),	(1,8),	(3,8),	(6,8)	
•  Greedy	cycles:	(3),	(1,8)	

Func7on	Y:	
•  Simple	cycles:		(3),	(5),	(1,5),	(3,5)	
•  Greedy	cycles:	(3),	(1,5)	

MAL	=	3	for	both	X	and	Y	

02/09/17	

32	

2	

The	Scheduling	Algorithm	
Load	collision	vector	(CV)	in	a	shiN	register	R;	
If	(LSB	of	R	is	1)	then	
						begin	
											Do	not	ini7ate	an	opera7on;	
											ShiN	R	right	by	one	posi7on	with	0	inser7on;	
						end	
else	
						begin	
											Ini7ate	an	opera7on;	
											ShiN	R	right	by	one	posi7on	with	0	inser7on;	
											R	=	R	OR	CVorig; 	 	//	Logical	OR	with	original	CV	

						end	

63	

ShiN	Register	R	

Original	CV	(CVorig)	

OR	Gates	

0	
0:	safe	
1:	collision	

2	

Op'mizing	a	Pipeline	Schedule	

•  We	can	insert	non-compute	(dummy)	delay	stages	into	the	original	pipeline.	
–  This	will	modify	the	reserva7on	table,	resul7ng	in	a	new	collision	vector.	
–  Possibly	a	shorter	MAL.	

64	

1	 2	 3	 4	
X	

X	 X	

X	 X	

S1	
S2	
S3	

X	
5	

S3	S2	S1	 1	0	1	1	

5+	

3	

MAL	=	3	

02/09/17	

33	

2	

•  Suppose	we	insert	delay	
elements	D1	and	D2	as	shown.	
–  This	will	modify	the	reserva7on	

table,	resul7ng	in	a	new	collision	
vector.	

65	

MAL	=	2		(for	the	greedy	cycle	(1,3))	

S3	S2	S1	

D1	

D2	

1	 2	 3	 4	
X	

X	 X	

X	

S1	
S2	
S3	 X1	

5	

X	D1	

D2	

6	
X2	
7	

X	
5	1	0	0	1	1	0	

1	1	0	0	1	1	

1	0	0	0	1	0	

1	0	0	0	1	1		
1	

3	

1	 4,7+	
7+	

5	

3	

5	

4,7+	

2	

Exercise	1	
•  For	the	following	reserva7on	tables,		

a)  What	are	the	forbidden	latencies?	
b)  Show	the	state	transi7on	diagram.	
c)  List	all	the	simple	cycles	and	greedy	cycles.	
d)  Determine	the	op7mal	constant	latency	cycle,	and	the	MAL.	
e)  Determine	the	pipeline	throughput,	for	τ	=	20	ns.	

66	

1	 2	 3	 4	
X	 X	

X	

X	

S1	
S2	
S3	

1	 2	 3	 4	
X	 X	

X	

X	

S1	
S2	
S3	

X	

X	

6	5	
X	
7	

02/09/17	

34	

2	

Exercise	2	

•  A	non-pipelined	processor	X	has	a	clock	frequency	of	250	MHz	and	an	
average	CPI	of	4.	Processor	Y,	an	improved	version	of	X,	is	designed	with	a	
5-stage	linear	instruc7on	pipeline.	However,	due	to	latch	delay	and	clock	
skew,	the	clock	rate	of	Y	is	only	200	MHz.	
a)  If	a	program	consis7ng	of	5000	instruc7ons	are	executed	on	both	processors,	

what	will	be	the	speedup	of	processor	Y	as	compared	to	processor	X?	

b)  Calculate	the	MIPS	rate	of	each	processor	during	the	execu7on	of	this	
par7cular	program.	

67	

2	

END	OF	LECTURE	41	

68	

02/09/17	

35	

2	69	

Lecture 42: ARITHMETIC PIPELINE

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Fixed	Point	Addi'on	Pipeline	

•  We	have	seen	how	a	ripple-carry	adder	works.	
–  Rippling	of	the	carries	gives	it	a	bad	worst-case	performance.	

•  We	explore	whether	pipelining	can	improve	the	performance.	
•  Assump6on:	delay	of	a	latch	is	comparable	to	the	delay	of	a	full	adder.	

70	

02/09/17	

36	

2	71	

FA0	

C0	

S0	

B0	A0	

FA1	

C1	

S1	

B1	A1	

FA2	

C2	

S2	

B2	A2	

FA3	

S3	

B3	A3	

C3	

C4	

Worst-case	delay		≈		4	x	(carry	genera'on	'me	in	FA)	

A	4-bit	Ripple	Carry	Adder	

2	72	

FA0	

C0	

S0	

B0	A0	

FA1	

C1	

S1	

B1	A1	

FA2	

C2	

S2	

B2	A2	

FA3	

S3	

B3	A3	

C3	

C4	

1-bit	latch	

4-bit	
pipelined	
ripple-carry	

adder	

02/09/17	

37	

2	

•  Delay	of	a	full	adder		=		tFA	
•  Delay	of	a	1-bit	latch		=		tL		
•  Clock	period		T		≥		(tFA	+	tL)	

•  ANer	the	pipeline	is	full,	one	result	(sum)	is	generated	every	7me	T.	
–  Convenient	for	vector	addi7on	kind	of	applica7ons.	

	for (i=0; i<10000; i++)
 a[i] = b[i] + c[i];	

73	

2	

Floa'ng-Point	Addi'on	

•  Floa7ng-point	addi7on	requires	the	following	steps:	
a)  Compare	exponents	and	align	man7ssas.	
b)  Add	man7ssas.	
c)  Normalize	result.	
d)  Adjust	exponent.	

•  Subtrac7on	is	similar.	

74	

Example:
 A = 0.9504 x 103

 B = 0.8200 x 102

Align	man7ssa:		0.0820	
Add	man7ssa:			0.9504	+	0.0820		=		1.0324	
Normalize:									0.10324	
Adjust	exponent:	3	+	1	=	4	
Sum		=		0.10324	x	104			

02/09/17	

38	

2	75	

Floa'ng-Point	
Addi'on	
Hardware	

•  The	last	step	of	
rounding	is	required	
in	IEEE-754	format.	

2	

4-Stage		
Floa'ng		Point		

Adder	

A	=	a	x	2p	
p	

Frac'on	with	
min(p,q)	

t	=	|p	-	q|	r	=	max(p,q)	
S1	

S2	

S3	

S4	

C	=	A	+	B	=	d	x	2s	

B	=	b	x	2q	

LeN	shiNer	

Leading	zero	counter	

Exponent	Subtractor	

Exponent	Adder	

Big	Adder	

Frac7on	Selector	

Right	ShiNer	

a	 q	 b	

s	 d	

Other	
Frac'on	

02/09/17	

39	

2	

Floa'ng-Point	Mul'plica'on	

•  Floa7ng-point	mul7plica7on	requires	the	following	steps:	
a)  Add	exponents.	
b)  Mul7ply	man7ssas.	
c)  Normalize	result.	

•  Division	is	similar.	

77	

Example:
 A = 0.9504 x 103

 B = 0.8200 x 102

Add	exponents:		3	+	2		=		5	
Mul7ply	man7ssa:			0.9504	x	0.8200		=		0.7793	
Normalize:									0.7793			(no	change)	
Product		=		0.7793	x	105			

A	last	step	of	rounding	
is	required	in	IEEE-754	
format.	

2	

A	MULTIFUNCTION	PIPELINE	FOR	
ADDITION	AND	MULTIPLICATION	

78	

02/09/17	

40	

2	

Linear	Pipeline	for	Floa'ng-Point	Mul'ply	

79	

Solutions
• STALL
• Predict Branch taken
• Predict Branch not taken
• ….

Floating Point Multiplication

• Inputs (Mantissa1, Exponenet1), (Mantissa2, Exponent2)
• Add the two exponents ! Exponent-out
• Multiple the 2 mantissas
• Normalize mantissa and adjust exponent
• Round the product mantissa to a single length mantissa.

You may adjust the exponent

Linear Pipeline for floating-point multiplication

Add
Exponents

Multiply
Mantissa

Normalize Round

Partial
Products

AccumulatorAdd
Exponents

Normalize Round

Re
normalize

Linear Pipeline for floating-point Addition

Partial
Shift

Add
Mantissa

Subtract
Exponents

Find
Leading 1

Round Re
normalize

Partial
Shift

Solutions
• STALL
• Predict Branch taken
• Predict Branch not taken
• ….

Floating Point Multiplication

• Inputs (Mantissa1, Exponenet1), (Mantissa2, Exponent2)
• Add the two exponents ! Exponent-out
• Multiple the 2 mantissas
• Normalize mantissa and adjust exponent
• Round the product mantissa to a single length mantissa.

You may adjust the exponent

Linear Pipeline for floating-point multiplication

Add
Exponents

Multiply
Mantissa

Normalize Round

Partial
Products

AccumulatorAdd
Exponents

Normalize Round

Re
normalize

Linear Pipeline for floating-point Addition

Partial
Shift

Add
Mantissa

Subtract
Exponents

Find
Leading 1

Round Re
normalize

Partial
Shift

2	

Linear	Pipeline	for	Floa'ng-Point	Add	

80	

Solutions
• STALL
• Predict Branch taken
• Predict Branch not taken
• ….

Floating Point Multiplication

• Inputs (Mantissa1, Exponenet1), (Mantissa2, Exponent2)
• Add the two exponents ! Exponent-out
• Multiple the 2 mantissas
• Normalize mantissa and adjust exponent
• Round the product mantissa to a single length mantissa.

You may adjust the exponent

Linear Pipeline for floating-point multiplication

Add
Exponents

Multiply
Mantissa

Normalize Round

Partial
Products

AccumulatorAdd
Exponents

Normalize Round

Re
normalize

Linear Pipeline for floating-point Addition

Partial
Shift

Add
Mantissa

Subtract
Exponents

Find
Leading 1

Round Re
normalize

Partial
Shift

02/09/17	

41	

2	

Combined	Adder	and	Mul'plier	

81	

Combined Adder and Multiplier

Partial
Shift

Add
Mantissa

Exponents
Subtract

/ ADD

Find
Leading 1

Round Re
normalize

Partial
Shift

Partial
Products

CA

B

E D

F G H

Reservation Table for Multiply

H

G

F
XE

XXD
XXC

XXB
XA

7654321

Reservation Table for Addition

YYH
YG

YYF
YE

YD
YC

B
YA

987654321

Nonlinear Pipeline Design

• Latency
The number of clock cycles between two initiations of
a pipeline

• Collision
Resource Conflict

• Forbidden Latencies
Latencies that cause collisions

2	

Reserva'on	Table	for	Mul'ply	

82	

Combined Adder and Multiplier

Partial
Shift

Add
Mantissa

Exponents
Subtract

/ ADD

Find
Leading 1

Round Re
normalize

Partial
Shift

Partial
Products

CA

B

E D

F G H

Reservation Table for Multiply

H

G

F
XE

XXD
XXC

XXB
XA

7654321

Reservation Table for Addition

YYH
YG

YYF
YE

YD
YC

B
YA

987654321

Nonlinear Pipeline Design

• Latency
The number of clock cycles between two initiations of
a pipeline

• Collision
Resource Conflict

• Forbidden Latencies
Latencies that cause collisions

•  Forbidden	latencies:	1,	2	
•  Collision	Vector:	(0	0	0	0	1	1)	
•  MAL	=	?	

02/09/17	

42	

2	

Collision	
Scenarios	

83	

Nonlinear Pipeline Design

• Latency Sequence
A sequence of permissible latencies between
successive task initiations

• Latency Cycle
A sequence that repeats the same subsequence

• Collision vector
C = (Cm, Cm-1, …, C2, C1), m <= n-1
n = number of column in reservation table
Ci = 1 if latency i causes collision, 0 otherwise

Mul – Mul Collision (lunch after 1 cycle)

H

G

F
ZXE
XZXD

ZX ZXC
ZX ZXB

ZXA

7654321

Mul –Mul Collision (lunch after 2 cycles)

H

G

F
XE

X ZXD
ZZXXC

ZZXXB
ZXA

7654321

Mul – Mul Collision (lunch after 3 cycles)

H

G

F
XE

XXD
ZZXXC

ZZXXB
ZXA

7654321

Nonlinear Pipeline Design

• Latency Sequence
A sequence of permissible latencies between
successive task initiations

• Latency Cycle
A sequence that repeats the same subsequence

• Collision vector
C = (Cm, Cm-1, …, C2, C1), m <= n-1
n = number of column in reservation table
Ci = 1 if latency i causes collision, 0 otherwise

Mul – Mul Collision (lunch after 1 cycle)

H

G

F
ZXE
XZXD

ZX ZXC
ZX ZXB

ZXA

7654321

Mul –Mul Collision (lunch after 2 cycles)

H

G

F
XE

X ZXD
ZZXXC

ZZXXB
ZXA

7654321

Mul – Mul Collision (lunch after 3 cycles)

H

G

F
XE

XXD
ZZXXC

ZZXXB
ZXA

7654321

Nonlinear Pipeline Design

• Latency Sequence
A sequence of permissible latencies between
successive task initiations

• Latency Cycle
A sequence that repeats the same subsequence

• Collision vector
C = (Cm, Cm-1, …, C2, C1), m <= n-1
n = number of column in reservation table
Ci = 1 if latency i causes collision, 0 otherwise

Mul – Mul Collision (lunch after 1 cycle)

H

G

F
ZXE
XZXD

ZX ZXC
ZX ZXB

ZXA

7654321

Mul –Mul Collision (lunch after 2 cycles)

H

G

F
XE

X ZXD
ZZXXC

ZZXXB
ZXA

7654321

Mul – Mul Collision (lunch after 3 cycles)

H

G

F
XE

XXD
ZZXXC

ZZXXB
ZXA

7654321

Latency	1	à	collision	

Latency	2	à	collision	

Latency	3	à	no	
collision	

2	

Reserva'on	Table	for	Addi'on	

84	

Combined Adder and Multiplier

Partial
Shift

Add
Mantissa

Exponents
Subtract

/ ADD

Find
Leading 1

Round Re
normalize

Partial
Shift

Partial
Products

CA

B

E D

F G H

Reservation Table for Multiply

H

G

F
XE

XXD
XXC

XXB
XA

7654321

Reservation Table for Addition

YYH
YG

YYF
YE

YD
YC

B
YA

987654321

Nonlinear Pipeline Design

• Latency
The number of clock cycles between two initiations of
a pipeline

• Collision
Resource Conflict

• Forbidden Latencies
Latencies that cause collisions

•  Forbidden	latencies:	1	
•  Collision	Vector:	(0	0	0	0	0	1)	
•  MAL	=	?	

02/09/17	

43	

2	

Summary	

•  Arithme7c	pipeline	is	a	standard	feature	in	modern-day	processors.	
•  Mandatory	for	vector	processors,	which	are	designed	specifically	to	

operate	on	vectors	of	data.	
•  We	shall	see	the	impact	of	arithme7c	pipeline	in	MIPS32	instruc7on	

pipeline	implementa7on	later.	

85	

2	

END	OF	LECTURE	42	

86	

