
15/09/17	

1	

2	1	

Lecture 59: MULTICYCLE OPERATIONS in MIPS32 

PROF. INDRANIL SENGUPTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

2	

Introduc)on	

•  Real	implementa1on	of	MIPS32	will	consist	of	both	integer	and	floa1ng-point	
units.	

•  Floa1ng-point	opera1ons	are	more	complex	than	integer	opera1ons.	
–  Will	require	more	than	one	cycles	in	the	EX	stage.	
–  Makes	the	pipeline	scheduling	and	control	more	complex.	
–  New	types	of	data	hazards	may	appear	that	are	otherwise	not	possible	in	the	

MIPS32	integer	pipeline.	

2	



15/09/17	

2	

2	

(a)	Solu)on	1	

•  Do	not	make	any	change	in	the	pipeline	control.	
•  Use	a	slow	clock	such	that	the	ALU	opera1ons	for	floa1ng-point	instruc1ons	

can	finish	in	one	clock	cycle	(in	EX	stage).	
•  Drawback:	

–  Other	opera1ons	are	also	slowed	down,	causing	severe	degrada1on	in	
performance.	

–  Not	acceptable	in	prac1ce.	

3	

2	

(b)	Solu)on	2	
•  We	allow	the	floa1ng-point	arithme1c	pipeline	to	have	a	longer	latency.	

–  EX	cycle	is	considered	to	be	repeated	several	1mes.	
–  The	number	of	repe11ons	can	vary	depending	on	the	opera1on.	

	
•  The	EX	stage	will	have	mul1ple	floa1ng-point	func1onal	units.	

–  For	example,	one	for	addi1on/subtrac1on	(pipelined),	one	for	mul1plica1on	
(pipelined),	and	one	for	division	(non-pipelined).	

–  A	stall	will	occur	in	the	pipeline	if	the	instruc1on	to	be	issued	will	either	cause	a	
structural	hazard	for	the	func1onal	unit,	or	a	data	hazard.	
•  Pipelining	the	func1onal	units	can	avoid	the	structural	hazard.	

4	

IF	 ID	 EX	 EX	 EX	 EX	 MEM	 WB	



15/09/17	

3	

2	

•  Consider	that	there	are	four	
func1onal	units:	
a)  Main	integer	unit	that	handles	

loads	and	stores,	integer	ALU	
opera1ons,	and	branches.	

b)  Floa1ng-point	adder	/	
subtractor.	

c)  Floa1ng-point	and	integer	
mul1plier.	

d)  Floa1ng-point	and	integer	
divider.	

5	

IF	 ID	 WB	MEM	

EX	
(INT)	

EX	
(+/-)	

EX		
(*)	

EX			
(/)	

2	

MIPS32	Floa)ng-Point	Extension	

•  In	the	floa1ng-point	extension	of	MIPS32,	there	are	32	floa1ng-point	
registers	F0	to	F31,	each	of	size	32	bits.	

•  For	double-precision	opera1ons,	register	pairs	can	be	used	to	store	the	data:	
–  Register	pair	<F0,	F1>		à		referred	to	as	F0	
–  Register	pair	<F2,	F3>		à		referred	to	as	F2	
–  Register	pair	<F30,	F31>		à		referred	to	as	F30	

•  Some	examples	of	double-precision	floa1ng-point	instruc1ons	are	shown	in	
the	next	slide.	

6	



15/09/17	

4	

2	

Floa)ng-Point	Instruc)on	Examples	

a)  Load	into	a	floa1ng-point	register	pair:	
										L.D  F6, 200(R2)  //  F6 = Mem[R2+200];  F7 = Mem[R2+204];	

b)  Store	from	a	floa1ng-point	register	pair:	
	 	S.D  F4, 40(R5)  //  Mem[R5+40] = F4;  Mem[R5+44] = F5;	

a)  Arithme1c	opera1ons	on	floa1ng-point	register	pairs:	
	ADD.D  F0,F4,F6 

    SUB.D  F12,F8,F20 
    MUL.D  F4,F6,F8 
    DIV.D  F8,F8,F10	

7	

2	

Latency	and	Ini)a)on	Interval	

•  The	mul1-cycle	arithme1c	units	are	oden	pipelined	to	allow	overlapped	
opera1on	and	hence	improved	performance.	

•  Defini1ons:	
a)  Latency:	The	number	of	cycles	between	an	instruc1on	producing	a	result	and	

another	instruc1on	using	it.	
b)  Ini1a1on	Interval:	The	number	of	cycles	that	must	elapse	between	issuing	two	

opera1ons	of	the	same	type.	

8	



15/09/17	

5	

2	

Typical	Values	Assumed	

9	

Func)onal	Unit	 Latency	 Ini)a)on	
Interval	

Integer	ALU	 0	 1	

Data	Memory	(integer	/	
FLP	load)	

1	 1	

FP	add	/	subtract	 3	 1	

FP	mul1ply	 6	 1	

FP	divide	 24	 25	

Assump1ons	on	number	of	EX	stages:	
•  FP	add/subtract:		4	
•  FP	mul1ply:	 			7	
•  FP	divide:	 			1	(not	pipelined)	

It	is	possible	to	have	up	to:	
•  	4	outstanding	FP	add/subtract	
•  	7	outstanding	FP	mul1ply	
•  	1	FP	divide.	

2	

MIPS32	Mul)-cycle	
Pipeline	Structure	

10	

IF	 ID	 MEM	 WB	

M1	 M2	 M3	 M4	 M5	 M6	 M7	

A1	 A2	 A3	 A4	

EX	

Divider	

Integer	Unit	



15/09/17	

6	

2	

Some	Scenarios	

11	

MUL.D	 IF	 ID	 M1	 M2	 M3	 M4	 M5	 M6	 M7	 MEM	 WB	

ADD.D	 IF	 ID	 A1	 A2	 A3	 A4	 MEM	 WB	

L.D	 IF	 ID	 EX	 MEM	 WB	

S.D	 IF	 ID	 EX	 MEM	 WB	

L.D								F8,0(R5)	 IF	 ID	 EX	 MEM	 WB	

MUL.D	F4,F8,F10	 IF	 ID	 -	 M1	 M2	 M3	 M4	 M5	 M6	 M7	 MEM	 WB	

ADD.D		F6,F4,F12	 IF	 -	 ID	 -	 -	 -	 -	 -	 -	 A1	 A2	 A3	 A4	 MEM	 WB	

S.D		F6,0(R5)	 IF	 -	 -	 -	 -	 -	 -	 ID	 EX	 -	 -	 -	 MEM	 WB	

Out	of	order	comple)on	of	instruc)ons	

Stalls	arising	due	to	RAW	hazards	

2	12	

MUL.D			F4,F8,F10	 IF	 ID	 M1	 M2	 M3	 M4	 M5	 M6	 M7	 MEM	 WB	

---	 IF	 ID	 EX	 MEM	 WB	

---	 IF	 ID	 EX	 MEM	 WB	

SUB.D				F6,F8,F10	 IF	 ID	 A1	 A2	 A3	 A4	 MEM	 WB	

---	 IF	 ID	 EX	 MEM	 WB	

---	 IF	 ID	 EX	 MEM	 WB	

L.D									F6,0(R5)	 IF	 ID	 EX	 MEM	 WB	

•  Three	instruc)ons	are	trying	to	write	into	the	FP	register	bank	simultaneously.	
•  WAW	hazard	for	the	last	two	conflic)ng	instruc)ons	(both	wri)ng	F6).	

•  No	conflict	in	MEM	as	only	the	last	instruc)on	accesses	memory.	



15/09/17	

7	

2	

END	OF	LECTURE	59	

13	

2	14	

Lecture 60: EXPLOITING INSTRUCTION LEVEL 
PARALLELISM 

PROF. INDRANIL SENGUPTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 



15/09/17	

8	

2	

Introduc)on	
•  To	keep	the	pipeline	full,	we	try	to	exploit	parallelism	among	instruc1ons.	

–  Sequence	of	unrelated	instruc1ons	that	can	be	overlapped	without	causing	
hazard.	

–  Related	instruc1ons	must	be	separated	by	appropriate	number	of	clock	cycles	
equal	to	the	pipeline	latency	between	the	pair	of	instruc1ons.	

15	

Instruc)on	producing	result	 Des)na)on	instruc)on	 Latency	(clock	cycles)	
FP	ALU	opera1on	 FP	ALU	opera1on	 3	

FP	ALU	opera1on	 Store	double	 2	

Load	double	 FP	ALU	opera1ons	 1	

Load	double	 Store	double	 0	

2	

•  In	addi1on,	branches	have	one	clock	cycle	delay.	
•  The	func1onal	units	are	fully	pipelined	(except	division),	such	that	an	

opera1on	can	be	issued	on	every	clock	cycle.	
–  As	an	alterna1ve,	the	func1onal	units	can	also	be	replicated.	

•  We	now	look	at	a	simple	compiler	technique	that	can	create	addi1onal	
parallelism	between	instruc1ons.	
–  Helps	in	reducing	pipeline	penalty.	

16	



15/09/17	

9	

2	

Example	1	

17	

for (i=1000; i>0; i--) 
  x[i] = x[i] + s; 

Add	a	scalar	s	to	a	vector	x	

Assume:	
•  R1:	points	to	x[1000]	
•  F2:	contains	the	scalar	s	
•  R2:	ini1alized	such	that	8(R2)	is	

the	address	of	x[0]	

Loop:  L.D    F0,0(R1) 
       ADD.D  F4,F0,F2 
       S.D    F4,0(R1) 
       ADDI   R1,R1,#-8 
       BNE    R1,R2,Loop 

Loop:  L.D    F0,0(R1) 
       stall 
       ADD.D  F4,F0,F2 
       stall 
       stall 
       S.D    F4,0(R1) 
       ADDI   R1,R1,#-8 
       BNE    R1,R2,Loop 
       stall 

MIPS32	
code	

9	clock	cycles	
per	itera9on	
(with	4	stalls)	

2	

•  We	now	carry	out	instruc(on	scheduling.	
–  Moving	instruc1ons	around	and	making	necessary	changes	to	reduce	stalls.	

18	

Loop:  L.D    F0,0(R1) 
       ADD.D  F4,F0,F2 
       S.D    F4,0(R1) 
       ADDI   R1,R1,#-8 
       BNE    R1,R2,Loop 

Loop:  L.D    F0,0(R1) 
       ADDI   R1,R1,#-8 
       ADD.D  F4,F0,F2 
       S.D    F4,8(R1) 
       BNE    R1,R2,Loop   

Loop:  L.D    F0,0(R1) 
       ADDI   R1,R1,#-8 
       ADD.D  F4,F0,F2 
       stall 
       stall 
       BNE    R1,R2,Loop 
       S.D    F4,8(R1) 

7	clock	cycles	
per	itera9on	
(with	2	stalls)	



15/09/17	

10	

2	

•  We	now	carry	out	loop	unrolling.	
–  Replica1ng	the	body	of	the	loop	

mul1ple	1mes,	so	that	the	loop	
overhead	“per	itera(on”	reduces.	

19	

Loop:  L.D    F0,0(R1) 
       ADD.D  F4,F0,F2 
       S.D    F4,0(R1) 
       ADDI   R1,R1,#-8 
       BNE    R1,R2,Loop 

Loop:  L.D    F0,0(R1) 
       ADD.D  F4,F0,F2 
       S.D    F4,0(R1) 
       L.D    F6,-8(R1) 
       ADD.D  F8,F6,F2 
       S.D    F8,-8(R1) 
       L.D    F10,-16(R1) 
       ADD.D  F12,F10,F2 
       S.D    F12,-16(R1) 
       L.D    F14,-24(R1) 
       ADD.D  F16,F14,F2 
       S.D    F16,-24(R1) 
 
       ADDI   R1,R1,#-32 
       BNE    R1,R2,Loop 

Unroll	loop	
3	9mes	

•  We	use	different	registers	for	each	itera1on.	
•  Number	of	stalls	per	loop		=		3	x	4	+	1		=		13	
•  Clock	cycles	per	loop		=		14	+	13		=		27	

Cycles	per	itera9on	=	27	/	4	=	6.8	

2	20	

Loop:  L.D    F0,0(R1) 
       ADD.D  F4,F0,F2 
       S.D    F4,0(R1) 
       L.D    F6,-8(R1) 
       ADD.D  F8,F6,F2 
       S.D    F8,-8(R1) 
       L.D    F10,-16(R1) 
       ADD.D  F12,F10,F2 
       S.D    F12,-16(R1) 
       L.D    F14,-24(R1) 
       ADD.D  F16,F14,F2 
       S.D    F16,-24(R1) 
 
       ADDI   R1,R1,#-32 
       BNE    R1,R2,Loop 

Loop:  L.D    F0,0(R1) 
       L.D    F6,-8(R1) 
       L.D    F10,-16(R1) 
       L.D    F14,-24(R1) 
       ADD.D  F4,F0,F2 
       ADD.D  F8,F6,F2 
       ADD.D  F12,F10,F2 
       ADD.D  F16,F14,F2 
       S.D    F4,0(R1) 
       S.D    F8,-8(R1) 
       S.D    F12,-16(R1) 
 
       ADDI   R1,R1,#-32 
       BNE    R1,R2,Loop 
       S.D    F16,8(R1) 

Schedule	the	
unrolled	loop	

No	stalls.	
14	/	4	=	3.5	
cycles	per	
itera9on	



15/09/17	

11	

2	

Loop	Unrolling	::	Summary		

•  Loop	unrolling	can	expose	more	parallelism	in	instruc1ons	that	can	be	
scheduled.	
–  Effec1ve	way	of	improving	pipeline	performance.	

•  Can	be	used	to	lower	the	CPI	in	architectures	where	more	than	one	
instruc1ons	can	be	issued	per	cycle.	
a)  Superscalar	architecture	
b)  Very	Long	Instruc1on	Word	(VLIW)	architecture	

21	

2	

A	Superscalar	Version	of	MIPS32	
•  Superscalar	Machines:	

–  Machines	that	can	issue	mul1ple	independent	instruc1ons	per	clock	cycle	when	
they	are	properly	scheduled	by	the	compiler.	

–  Can	result	in	a	CPI	of	less	than	1.	
•  How	does	it	work?	

–  The	hardware	can	issue	a	small	number	(say,	2	to	4)	of	independent	instruc1ons	in	
every	clock	cycle.	

–  The	hardware	checks	for	conflicts	between	instruc1ons.	
–  If	the	instruc1ons	are	dependent,	then	only	the	first	instruc1on	in	the	sequence	

will	be	issued.	

22	



15/09/17	

12	

2	23	

Cache	
Memory	

Fetch	
Unit	

Decode	
and	Issue	

Unit	

FU	 FU	 FU	

Register	File	

Mul9ple	Instruc9ons	

Sequen9al	stream	
of	instruc9ons	

…	

…	

Superscalar	Architecture	Schema)c	

2	

Example	
•  Suppose	two	instruc1ons	can	be	issued	every	clock	cycle.	

a)  One	can	be	a	load,	store,	branch	or	integer	ALU	opera1on.	
b)  The	other	can	be	any	floa1ng-point	opera1on.	

24	

Integer	instr.	 IF	 ID	 EX	 MEM	 WB	

FP	instr.	 IF	 ID	 EX	 MEM	 WB	

Integer	instr.	 IF	 ID	 EX	 MEM	 WB	

FP	instr.	 IF	 ID	 EX	 MEM	 WB	

Integer	instr.	 IF	 ID	 EX	 MEM	 WB	

FP	instr.	 IF	 ID	 EX	 MEM	 WB	

•  Used	only	for	
illustra)on.	

•  We	have	not	shown	
how	FP	opera)ons	
extend	the	EX	cycle.	



15/09/17	

13	

2	

•  How	to	check	dependency	between	instruc1ons	in	a	stream?	
a)  Can	be	checked	dynamically	by	the	hardware.	
b)  Compiler	can	take	the	complete	responsibility	of	crea1ng	a	package	of	

instruc1ons	that	can	be	simultaneously	issued.	
•  Hardware	does	not	dynamically	take	any	decision	about	mul1ple	issue.	
•  Also	referred	to	as	VLIW	architecture.	

25	

2	

•  Some	issues:	
–  If	we	issue	an	integer	and	a	FP	opera1on	in	parallel,	the	need	for	addi1onal	

hardware	is	minimized.	
•  Different	register	sets	and	func1onal	units	are	used.	

–  Only	conflict	is	when	the	integer	instruc1on	is	a	FP	load,	store	or	move.	
•  This	creates	conten1on	for	the	FP	register	ports	and	can	be	treated	as	a	structural	

hazard.	

–  In	the	original	MIPS32	pipeline,	load	instruc1ons	have	a	latency	of	1.	
•  In	the	superscalar	version,	the	next	3	instruc1ons	cannot	use	the	result	of	load	without	

stalling.	
•  Branch	delay	also	becomes	3	cycles.	

26	



15/09/17	

14	

2	

VLIW	Architecture	

•  In	a	Very	Long	Instruc1on	Word	(VLIW)	machine,	an	instruc1on	word	is	
typically	hundreds	of	bits	in	length.	
–  Specifies	a	number	of	basic	opera1ons	/	instruc1ons,	each	using	different	

func1onal	unit.	
–  Mul1ple	func1onal	units	are	used	concurrently	when	a	VLIW	“macro-instruc(on”	

is	being	executed.	
–  All	the	func1onal	units	share	a	common	register	file.	

•  Similar	to	superscalar	architecture	in	concept,	but	responsibility	of	iden1fying	
set	of	instruc1ons	that	can	run	concurrently	lies	with	the	compiler.		

27	

2	28	

VLIW	Architecture	Schema)c	

Cache	
Memory	

Fetch	
Unit	

FU	 FU	 FU	

Register	File	

Single	Mul9-Opera9on	Instruc9ons	

Mul9-opera9on	
instruc9on	

…	

…	
:	



15/09/17	

15	

2	29	

Loop:  L.D    F0,0(R1) 
       ADD.D  F4,F0,F2 
       S.D    F4,0(R1) 
       L.D    F6,-8(R1) 
       ADD.D  F8,F6,F2 
       S.D    F8,-8(R1) 
       L.D    F10,-16(R1) 
       ADD.D  F12,F10,F2 
       S.D    F12,-16(R1) 
       L.D    F14,-24(R1) 
       ADD.D  F16,F14,F2 
       S.D    F16,-24(R1) 
 
       ADDI   R1,R1,#-32 
       BNE    R1,R2,Loop 

We	try	to	schedule	this	unrolled	program	
code	on	a	VLIW	processor,	assuming	that	
there	are	4	func1onal	units:	
•  Two	memory	reference	units	(to	handle	

LOAD	and	STORE).	
•  One	floa1ng-point	arithme1c	unit.	
•  One	integer	opera1on	and	branch	unit.	

2	30	

Load	/	Store	1	 Load	/	Store	2	 FP	ALU	 Integer	
L.D		F0,	0	(R1)	 L.D		F6,	-8	(R1)	

L.D		F10,	-16	(R1)	 L.D		F14,	-24	(R1)	

ADD.D		F4,	F0,	F2	

ADD.D		F8,	F6,	F2	

S.D		F4,	0	(R1)	 ADD.D		F12,	F10,	F2	

S.D		F8,	-8	(R1)	 ADD.D		F16,	F14,	F2	 ADDI		R1,	R1,	#-32	

S.D		F12,	-16	(R1)	

S.D		F16,	-24	(R1)	 BNE		R1,	R1,	Loop	

Clock	cycles	/	itera9on		=		8	/	4	=	2.0	

Scheduling	on	a	VLIW	Processor	



15/09/17	

16	

2	

END	OF	LECTURE	60	

31	

2	32	

Lecture 61: VECTOR PROCESSORS 

PROF. INDRANIL SENGUPTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 



15/09/17	

17	

2	

Introduc)on	

•  The	following	factors	limit	the	maximum	performance	improvement	that	can	
be	achieved	through	pipelining:	
a)  Clock	Cycle	Time	(CCT)	

•  CCT	can	be	reduced	by	increasing	the	number	of	pipeline	stages.	
•  This	increases	pipeline	dependencies	and	results	in	a	higher	CPI.	

b)  Instruc1on	Fetch	and	Decode	Rate:	
•  There	is	a	limit	to	the	number	of	instruc1ons	that	can	be	fetched	and	issued	in	every	

clock	cycle.	
•  Depends	on	processor-memory	speed	gap	(also	known	as	Flynn	bo;leneck).	

33	

2	

•  Vector	Processor:	
–  Provides	high-level	instruc1ons	that	operate	on	en1re	arrays	of	numbers	(called	

vectors).	
–  A	single	vector	instruc1on	is	equivalent	to	an	en1re	loop.	
–  No	loop	overheads	are	required.	

•  Example:	
–  A,	B	and	C	are	three	vectors	containing	64	numbers	each.	
–  The	three	vectors	are	mapped	to	vector	registers	V1,	V2,	V3	(say).	
–  The	following	vector	instruc1on	computes		Ci		=		Ai		+		Bi	
																			ADDV  V1,V2,V3	

34	



15/09/17	

18	

2	

Basic	Vector	Processor	Architecture	

•  A	vector	processor	typically	consists	of	an	ordinary	pipelined	scalar	unit	plus	
a	vector	unit.	

•  All	func1onal	units	within	the	vector	unit	are	deeply	pipelined,	resul1ng	in	a	
shorter	clock	cycle	1me	C.	
–  Deep	pipelining	on	vectors	do	not	result	in	hazards,	since	every	computa1on	is	

independent	of	the	others.	

•  We	shall	illustrate	some	concepts	based	on	a	hypothe1cal	vector	processor	
that	is	based	on	the	MIPS32	architecture.	

35	

2	36	

Memory	System	

Vector	Load	/	
Store	Unit	

V0	
V1	
V2	
V3	
V4	
V5	
V6	
V7	

Vector	
Registers	

FP	add	/	subtract	

FP	mul1ply	

FP	divide	

Integer	

Logical	

Vector	Func9onal	Units	

Scalar	
Registers	



15/09/17	

19	

2	

•  About	the	Vector	Processor	ISA:	
–  Vector	Registers	

•  There	are	8	vector	registers	V0,	V1,	…,	V7.	
•  Each	vector	register	can	hold	64	double-words.	
•  Each	vector	register	has	2	read	ports	and	1	write	port,	to	allow	overlapped	opera1ons.	

–  Vector	Func1onal	Units	
•  Each	func1onal	unit	is	fully	pipelined	and	can	start	a	new	opera1on	every	clock	cycle.	
•  A	hardware	control	unit	detects	hazards	(conflicts	for	func1ons	units	and	also	for	

register	accesses),	and	inserts	stalls	as	required.	

37	

2	

–  Vector	Load/Store	Unit	
•  The	load/store	unit	is	also	fully	pipelined	and	allows	fast	loading	and	storing	of	

vectors.	
•  Memory	system	is	also	deeply	interleaved	to	allow	parallel	access.	
•  Ader	an	ini1al	latency,	one	word	can	be	accessed	per	clock	cycle.	

–  Scalar	Registers	
•  These	are	the	normal	scalar	and	floa1ng-point	registers	of	MIPS32.	
•  Can	be	used	to	provide	data	as	input	to	the	vector	func1onal	units,	as	well	as	to	

compute	memory	addresses	for	vector	load/store.	

38	



15/09/17	

20	

2	

Example	1	
•  Consider	the	SAXPY	or	DAXPY	vector	

opera1on:			Y	=	a	*	X	+	Y	
						where	X	and	Y	are	vectors	(of	size		
						64),	and	a	is	a	scalar.	

–  Rx	contains	star1ng	address	of	X	
–  Ry	contains	star1ng	address	of	Y	
–  R1	contains	the	address	of	the	

scalar	‘a’.	

39	

   L.D    F0, 0(R1) 
   ADDI   R4, Rx, #512 
L: L.D    F2, 0(Rx) 
   MULT.D F2, F0, F2 
   L.D    F4, 0(Ry) 
   ADD.D  F4, F2, F4 
   S.D    F4, 0(Ry) 
   ADDI   Rx, Rx, #8 
   ADDI   Ry, Ry, #8 
   BNE    R4, Rx, L 

MIPS32	
Code	

   L.D    F0, 0(R1) 
   LV     V1, 0(Rx) 
   MULTSV V2, F0, V1 
   LV     V3, 0(Ry) 
   ADDVV  V4,V2,V3 
   SV     V4, 0(Ry) 

Vector	
Processor	
Code	

2	

•  The	vector	processor	greatly	reduces	the	dynamic	instruc1on	bandwidth		::		
from	514	to	6.	

•  Frequency	of	pipeline	interlocks	are	also	greatly	reduced.	
–  In	the	original	MIPS32	version,	every	ADD.D	must	wait	for	MULT.D,	and	S.D	must	

wait	for	ADD.D.	
–  In	the	vector	processor	version,	pipeline	stalls	are	required	once	per	vector	

opera1on,	rather	than	once	per	vector	element.	
–  Pipeline	stall	frequency	is	reduced	almost	64	1mes.	

40	



15/09/17	

21	

2	

Vector	Start-up	and	Ini)a)on	Rate	
•  The	running	1me	of	each	vector	opera1on	in	the	vector	processor	has	two	

components:	
a)  Start-up	Time:	Arises	due	to	the	pipeline	latency	of	the	vector	opera1on.	

•  Mainly	determined	by	the	depth	of	the	pipeline.	
•  A	latency	of	8	clock	cycles	means	that	the	opera1on	takes	8	clock	cycles,	and	also	there	

are	8	stages	in	the	pipeline.	

b)  Ini)a)on	Rate:	Time	per	result	once	the	vector	instruc1on	is	running.	
•  Usually	1	per	clock	cycle	for	individual	opera1ons.	

•  The	total	1me	to	complete	a	vector	opera1on	of	length	n	(n	≤	64)	is:	
												Start-up	Time		+		(n	x	Ini9a9on	Rate)	

41	

2	

Example	2	

•  Suppose	the	start-up	1me	of	vector	mul1ply	opera1on	is	12	clock	cycles.	
Ader	start-up,	the	ini1a1on	rate	is	one	per	clock	cycle.	What	will	be	the	
number	of	clock	cycles	required	per	result	for	a	64-element	vector?	

•  Solu)on:	
–  Clock	cycles	per	result			=			Total	Time	/	Vector	Length	
																																																=			(12		+		64	*	1)		/		64			=			1.19	

42	



15/09/17	

22	

2	

Factors	Affec)ng	Start-up	and	Ini)a)on	Rates	

•  For	register-register	opera1ons,		
–  The	start-up	1me	(in	clock	cycles)	will	be	equal	to	the	depth	of	the	func1onal	unit	

pipeline.	
–  The	ini1a1on	rate	is	determined	by	how	oden	a	new	set	of	operands	can	be	fed	

to	the	func1onal	unit	(usually,	1).	

•  Typical	depths	of	the	func1onal	units:	
–  FP	addi1on	/	subtrac1on:	 	6	stages.	
–  FP	mul1ply:	 	 	7	stages.	

•  If	a	vector	computa1on	depends	on	an	uncompleted	computa1on,	stall	
cycles	need	to	be	inserted		à		extra	4	cycles	start-up	penalty.	

43	

2	

•  Independent	vector	opera1ons	using	different	func1onal	units	can	proceed	
without	any	penalty	or	delay.	
						MULTV			V1,	V2,	V3	
						ADDV						V5,	V2,	V4	

•  For	the	vector	processor,	we	define	the	sustained	rate	as	the	1me	per	element	
for	a	collec1on	of	related	vector	opera1ons.	
–  Will	be	typically	greater	than	1,	due	to	start-up	costs.	

44	



15/09/17	

23	

2	

Example	3	
•  For	vector	operands	of	length	64,	consider	the	following	vector	instruc1ons:	

								MULTV 	V1,	V2,	V3	
								ADDV 	V7,	V4,	V5	

–  For	the	MULT	instruc1on,	
•  Star1ng	1me		=		0	
•  Comple1on	1me		=		7	+	64		=		71	

–  For	the	ADDV	instruc1on,	
•  Star1ng	1me		=		1	
•  Comple1on	1me		=		1	+	6	+	64		=		71	

–  Sustained	rate		::		128	FLOPS	in	71	cycles		=		1.8	FLOPS/cycle	

45	

2	

Overheads	for	Load/Store	Unit	
•  This	is	significantly	more	complicated	for	vector	processors.	
•  LOAD	opera1on:	

–  Start-up	1me	is	the	1me	to	get	the	first	word	from	memory	into	a	register.	
–  If	the	rest	of	the	vector	can	be	transferred	without	stalling,	the	vector	ini1a1on	

rate	will	be	equal	to	the	rate	at	which	new	words	are	fetched	or	stored.	
–  High-order	memory	interleaving	is	used.	

46	

Interleaved	
memory	
modules	

CPU	 MUX	/	
DEMUX	 Registers	 .	.	.	



15/09/17	

24	

2	

•  STORE	opera1on:	
–  Start-up	1me	is	not	so	important	here,	as	stores	do	not	directly	produce	results.	
–  However,	for	a	LOAD	using	the	result	of	a	STORE,	the	LOAD	may	see	part	or	all	of	

the	12-cycle	latency	of	a	store.	

•  Typical	start-up	penal1es	for	vector	opera1ons:	
	

47	

Opera)on	 Start-up	Penalty	

Vector	add	/	subtract	 6	

Vector	mul1ply	 7	

Vector	divide	 20	

Vector	load	 12	

2	

Other	Vector	Processing	Concepts	

•  Vector	Length	Register	
–  Specifies	the	length	of	any	vector	opera1on.	

•  Loading	and	storing	vectors	with	strides	
–  Vector	elements	are	stored	in	memory	with	uniform	spacing	between	elements.	
–  Adjacent	elements	of	a	vector	are	not	sequen1al	in	memory.	

•  Strip	Mining	
–  How	to	split	loops	if	the	original	loop	handles	vectors	that	are	larger	than	that	

supported	by	the	hardware?	

48	



15/09/17	

25	

2	

END	OF	LECTURE	61	

49	

2	50	

Lecture 62: MULTI-CORE PROCESSORS 

PROF. INDRANIL SENGUPTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 



15/09/17	

26	

2	

Introduc)on	
•  Mul1-Core	Processor:	

–  A	processing	system	composed	of	two	or	more	independent	cores	or	CPUs.	
–  The	cores	are	typically	integrated	onto	a	single	integrated	circuit	die,	or	they	may	

be	integrated	on	mul1ple	dies	in	a	single-chip	package.	

•  Cores	share	memory:	
–  In	modern	mul1-core	systems,	typically	the	L1	and	L2	cache	are	private	to	each	

core,	while	the	L3	cache	is	shared	among	the	cores.	
•  In	symmetric	mul1-core	systems,	all	the	cores	are	iden1cal.	

–  Example:	mul1-core	processors	used	in	computer	systems.	

•  In	asymmetric	mul1-core	systems,	the	cores	may	have	different	func1onali1es.	

51	

2	

Why	Mul)-core?	

•  It	is	difficult	to	sustain	Moore’s	law	and	at	the	same	1me	meet	performance	
demands	of	various	applica1ons.	
–  Difficult	to	increase	clock	frequency,	mainly	due	to	power	consump1on	issues.	

•  Possible	solu1on:	
–  Replicate	hardware	and	run	them	at	a	lower	clock	rate	to	reduce	power	

consump1on.	
–  1	core	running	at	3	GHz	has	the	same	performance	as	2	cores	running	at	1.5	GHz,	

with	lower	power	consump1on.	

52	



15/09/17	

27	

2	

Taxonomy	of	Parallel	Architectures	

•  Single	instruc1on-stream	single	data-stream	(SISD)	
–  Tradi1onal	uniprocessor	systems.	

•  Mul1ple	instruc1on-stream	single	data-stream	(MISD)	
–  No	commercial	implementa1on	exists.	
–  Pipelining	can	be	argued	as	a	type	of	MISD	processing.	

•  Single	instruc1on-stream	mul1ple	data-stream	(SIMD)	
–  Array	and	vector	processors.	

•  Mul1ple	instruc1on-stream	mul1ple	data-stream	(MIMD)	
–  Mul1processor	systems	(various	architectures	exist).	

53	

2	54	
2

Single-core computer
Single-core	
Computer	

•  Falls	under	SISD	category.	
•  Typically	two	buses:	

a)  A	high-speed	CPU-
memory	bus,	that	also	
connects	to	I/O	bridge.	

b)  A	lower-speed	I/O	bus,	
connec1ng	various	
peripherals.	



15/09/17	

28	

2	55	 3

Single-core CPU chip
the single core

Single-core	
Processor	

2	56	

CPU	

North	
Bridge	

Memory	Slots	

Memory	
Bus	

High-speed	
Graphics	Bus	

PCI	
Express	 Front-side	Bus	

South	
Bridge	

Internal	Bus	

PCI	Bus	

PCI	
Slots	

Ethernet	
SATA	
USB	
HD	Audio	

Super	
I/O	Low	Pin	Count	(LPC)	Bus	

Serial	and	parallel	
ports,	Keyboard,	

Mouse	

Typical	mother	
board	architecture:	
•  Chipset	consis1ng	

of	north	bridge	
and	south	bridge	



15/09/17	

29	

2	57	

North	
Bridge	

South	
Bridge	

Loca)ng	North	
Bridge	and	South	
Bridge	Chipset	on	
Motherboard	

•  Bus	speeds	and	
other	capabili1es	
depend	upon	the	
chipset.	

2	58	

4

Multi-core architectures

• This lecture is about a new trend in 
computer architecture:
Replicate multiple processor cores on a 
single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

Mul)-core	Architecture	



15/09/17	

30	

2	

Tradi)onal	Mul)processor	Architectures	

•  Can	be	broadly	classified	into	two	types:	
a)  Tightly	coupled	mul1processors	

•  The	processors	access	common	shared	memory.	
•  Inter-processor	communica1on	takes	place	through	shared	memory.	
•  Mul1-core	architectures	fall	under	this	category.	

b)  Loosely	coupled	mul1processors	
•  Memory	is	distributed	among	the	processors.	
•  Processors	typically	communicate	through	a	high-speed	interconnec1on	
network.	

59	

2	

(a)	Tightly	Coupled	Mul)processors	

60	

MAIN	MEMORY	 I/O	SYSTEM	

Processor	

i-L1	 d-L1	

L2	

Processor	

i-L1	 d-L1	

L2	

Processor	

i-L1	 d-L1	

L2	

Processor	

i-L1	 d-L1	

L2	

L3	



15/09/17	

31	

2	

•  Some	features:	
–  Difficult	to	extend	it	to	large	number	of	processors.	
–  Memory	bandwidth	requirements	increase	with	the	number	of	processors.	
–  Memory	access	1me	for	all	processors	is	uniform.	

•  Called	Uniform	Memory	Access	–	UMA.	

61	

2	

(b)	Loosely	Coupled	Mul)processors	

62	

Processor	
+	Cache	

Memory	 I/O	

INTERCONNECTION	NETWORK	

Processor	
+	Cache	

Memory	 I/O	

Processor	
+	Cache	

Memory	 I/O	

…	



15/09/17	

32	

2	

•  Some	features:	
–  Cost-effec1ve	way	to	scale	memory	bandwidth.	
–  Communica1ng	data	between	processors	is	complex	and	has	higher	latency.	
–  Memory	access	1me	depends	on	the	loca1on	of	data.	

•  Called	Non	Uniform	Memory	Access	–	NUMA.	

63	

2	

Cache	Coherency	Problem	in	Mul)processors	

•  Maintaining	coherence	between	data	loaded	in	processor	caches	is	an	issue	
in	mul1processor	systems.	
–  Same	memory	block	is	loaded	into	two	processor	caches.	
–  One	of	the	processors	updates	the	data	in	its	local	cache.	
–  Data	in	the	other	processor	cache	and	also	memory	becomes	inconsistent.	

•  Broadly	two	classes	of	techniques	are	used	to	solve	this	problem:	
a)  Snoopy	protocols	
b)  Directory-based	protocols	

64	



15/09/17	

33	

2	

END	OF	LECTURE	62	

65	

2	66	

Lecture 63: SOME CASE STUDIES 

PROF. INDRANIL SENGUPTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 



15/09/17	

34	

2	

Introduc)on	

•  Graphics	Processing	Unit	(GPU)	is	a	processor	op1mized	for	2D/3D	graphics	
computa1on,	video	rendering	and	visual	compu1ng.	

•  It	is	a	highly	parallel,	highly	mul1-threaded	mul1processor	op1mized	for	
visual	compu1ng.	

•  It	provides	real-1me	visual	interac1on	with	computed	objects	via	graphics	
objects	like	image	and	video.	

•  It	serves	both	as	a	programmable	graphics	processor	and	a	scalable	parallel	
compu1ng	engine.	
–  Heterogeneous	compu1ng	systems	combine	a	GPU	with	a	CPU.	

67	

2	

•  GPUs	contain	much	larger	number	of	dedicated	ALUs	than	CPUs.	
–  Well	suited	to	Single	Instruc1on	Stream	Mul1ple	Data	Stream	(SIMD)	type	of	

processing.	
–  Can	be	used	to	advantage	in	applica1ons	where	there	are	lot	of	data	parallel	

computa1ons.	

•  Each	processing	unit	on	a	GPU	contains	local	memory	that	improves	data	
manipula1on	and	reduces	data	fetch	1me	from	memory.	

68	



15/09/17	

35	

2	

•  Hybrid	systems	combine	CPU	and	GPU.	
–  For	programs	that	have	one	or	very	few	threads,	CPUs	achieve	beyer	

performance	than	GPUs	as	they	have	lower	opera1on	latencies.	
–  For	programs	having	a	large	number	of	threads,	GPUs	with	higher	execu1on	

throughput	can	achieve	much	higher	performance	than	CPUs.	
–  Many	applica1ons	use	both,	execu1ng	the	sequen1al	parts	on	the	CPU,	and	

numerically	intensive	parts	on	the	GPU.	

•  Modern	GPUs	are	massively	parallel	with	more	than	100	cores,	suppor1ng	
1000s	of	threads.	

69	

2	70	

Load/store 

Global Memory 

Thread	Execu)on	Manager	

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Load/store Load/store Load/store Load/store Load/store 



15/09/17	

36	

2	

Does	x86	chips	use	microprogramming?	

•  The	dilemma:	
–  RISC	architecture	supposedly	execute	instruc1ons	faster	than	CISC.	
–  RISC	architecture	can	be	efficiently	implemented	using	hardwired	control.	
–  CISC	architecture	may	prefer	microprogramming	because	of	complex	

instruc1ons.	

•  So	what	is	actually	done	in	a	CISC	processor	like	x86?	
–  A	combina1on	of	microprogramming	and	hardwired	control.	

71	

2	

•  Intel	chips	are	CISC	based,	which	use	microprogramming	to	break	the	
complex	instruc1ons	into	simpler	sub-opera1ons.	

•  The	sub-opera1ons	are	very	similar	to	RISC	instruc1ons.	
•  So,	at	the	instruc1on	level	the	processor	can	be	considered	to	be	using	

microprogramming.	
•  At	the	lower	(hardware)	level,	it	may	be	considered	to	be	using	hardwired	

control	to	execute	the	RISC-like	instruc1ons	in	a	pipeline.	

72	



15/09/17	

37	

2	73	

Microprogramming	

CISC	Instruc)ons	

RISC-like	Instruc)ons	

Hardwired	Control	

IF	 ID	 EX	 MEM	 WB	 Pipeline	

2	

Evolu)on	of	Intel	Microprocessors	

•  Architectural	advancements	have	taken	place	across	
genera1ons:	
–  NetBurst	
–  Core	
–  Nehalem	
–  Sandy	Bridge	
–  Ivy	Bridge	
–  Haswell	

74	



15/09/17	

38	

2	

(a)	Netburst	Architecture	

•  Hyperthreading:	
–  Single	processor	appears	to	be	two	logical	processors.	
–  Each	logical	processor	has	its	own	set	of	registers.	
–  Increases	resource	u1liza1on	and	improve	performance.	

•  Rapid	Execu1on	Engine:	
–  ALUs	run	at	twice	the	processor	frequency.	
–  Basic	integer	opera1ons	execute	in	½	processor	clock	1ck.	
–  Provides	higher	throughput	and	reduced	latency	of	execu1on.	

75	

2	

•  Design	considera1ons:	
–  Deep	20-stage	pipeline	with	increased	branch	mis-predic1ons	but	greater	clock	

speeds	and	performance.	
–  Techniques	to	hide	penal1es	such	as	parallel	execu1on,	buffering	and	

specula1on.	
–  Executes	instruc1ons	dynamically	and	out-of-order.	

76	



15/09/17	

39	

2	

(b)	Core	Architecture	

•  Mul1ple	cores	and	hardware	virtualiza1on.	
•  14-stage	pipeline	(less	deeper	than	Netburst).	
•  Dual-core	design	with	linked	L1	cache	and	shared	L2	cache.	
•  Macrofusion:	Two	program	instruc1ons	can	be	executed	as	one	micro-opera1on.	
•  Intel	Intelligent	Power	Capability:	Manages	run-1me	power	consump1on	of	the	

execu1on	cores.	
•  Includes	advanced	power	ga1ng:	turns	on	individual	processor	logic	subsystems	

only	if	they	are	needed.	
•  Prefetching	unit	is	extended	to	handle	separately	hardware	prefetching	by	each	

core.	

77	

2	

(c)	Nehalem	Architecture	
•  Family	of	processors	introduced:	

–  Core	i7	processors	for	business	and	high-end	consumer	markets.	
–  Core	i5	processors	for	mainstream	consumer	markets.	
–  Core	i3	processor	for	the	entry-level	consumer	market.	

•  Features	of	Nehalem:	
–  Integrated	memory	controller.	
–  Advanced	configura1on	and	power	states.	
–  Improvements	to	the	pipeline	(L2	Branch	Predictor,	L2	TLB,	etc.).	
–  Three-level	cache.	
–  Hyper-threading	support.	

78	



15/09/17	

40	

2	

•  Design	considera1ons:	
–  Hyper-threading	is	reintroduced	to	cater	to	increasing	number	of	thread	

based	applica1ons.	
–  Cores	are	placed	on	a	single	die	to	reduce	latencies.	
–  L1	and	L2	caches	are	private	to	each	core,	with	a	large	shared	L3	cache.	

79	

2	

(d)	Sandy	Bridge	Architecture	

•  Some	features:	
–  Intel	Advanced	Vector	Extensions	(AVX)	
–  Integrated	graphics	unit	on	the	same	die	
–  Next	genera1on	Intel	Turbo	Boost	technology	
–  High	bandwidth	and	low	latency	modular	on-die	Ring	Interconnect	
–  Integrated	memory	controller	

80	



15/09/17	

41	

2	

(e)	Haswell	Architecture	

•  Next	genera1on	branch	predic1on	
•  Improved	front-end	

–  Ini1alize	TLB	and	cache	misses	specula1vely	
–  Handle	cache	misses	in	parallel	to	hide	latency	
–  Improved	branch	predic1on	

•  Deeper	buffers	for	more	instruc1on	parallelism	
•  More	execu1on	units,	shorter	latencies	
•  More	load/store	bandwidth	for	beyer	prefretching	

81	

2	

Intel’s	Tick-Tock	Development	Model	

82	

 
Merom1 

 

NEW 
Microarchitecture 

65nm 

 
Penryn 

 

NEW 
Process 

45nm 

 
Nehalem 

 

NEW 
Microarchitecture 

45nm 

 
Westmere 

 

NEW 
Process 

32nm 

 

Sandy 
Bridge 

 
NEW 

Microarchitecture 

32nm 

 

Ivy 
Bridge 

 
NEW 

Process 

22nm 

 
Haswell 

 

NEW 
Microarchitecture 

22nm 

TOCK TOCK TICK TOCK TICK TOCK TICK 



15/09/17	

42	

2	

END	OF	LECTURE	63	

83	

2	84	

Lecture 64: SUMMARIZATION OF THE COURSE 

PROF. INDRANIL SENGUPTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, IIT KHARAGPUR 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 

Lecture 1: EVOLUTION OF COMPUTER SYSTEM 
  

DR. KAMALIKA DATTA 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA 



15/09/17	

43	

2	

Coverage	of	the	Course	

•  WEEK	1:	
–  Evolu1on	of	computer	systems	
–  Basic	opera1on	of	a	computer	
–  Memory	addressing	and	systems	sodware	
–  Sodware	and	architecture	types	
–  Instruc1on	set	architecture	

85	

2	

•  WEEK	2:	
–  Number	representa1on	
–  Instruc1on	format	and	addressing	
–  CISC	and	RISC	architecture	
–  MIPS32	instruc1on	set	and	programming	
–  SPIM:	A	MIPS32	simulator	

86	



15/09/17	

44	

2	

•  WEEK	3:	
–  Measuring	CPU	performance	
–  Choice	of	benchmarks	
–  Summarizing	performance	results	
–  Amadahl’s	law	and	applica1ons	

87	

2	

•  WEEK	4:	
–  Design	of	control	unit	
–  Hardwired	and	microprogrammed	control	
–  Non-pipelined	implementa1on	of	MIPS32	ISA	

88	



15/09/17	

45	

2	

•  WEEK	5:	
–  Processor	memory	interac1on	
–  Types	of	memory	systems:	sta1c	and	dynamic	RAM	
–  Memory	interfacing	and	addressing	
	

89	

2	

•  WEEK	6:	
–  Memory	hierarchy	design	
–  Cache	memory	design	and	mapping	techniques	
–  Techniques	for	improving	cache	performance	

90	



15/09/17	

46	

2	

•  WEEK	7:	
–  Design	of	adders:	ripple-carry,	carry	look-ahead,	carry	select,	and	carry	

save	adders	
–  Design	of	signed	and	unsigned	mul1pliers	
–  Design	of	dividers	

91	

2	

•  WEEK	8:	
–  Floa1ng-point	number	representa1on	
–  Floa1ng-point	arithme1c	
–  Basic	pipelining	concepts	
–  Pipeline	scheduling	
–  Arithme1c	pipeline	

92	



15/09/17	

47	

2	

•  WEEK	9:	
–  Hard	disk	and	solid-state	disk	
–  Input-output	organiza1on	
–  Data	transfer	techniques	
–  Interrupt	handling	

93	

2	

•  WEEK	10:	
–  Direct	memory	access	(DMA)	transfer	
–  Interfacing	of	keyboard	and	printer	
–  Bus	standards	inside	a	computer	system	
–  The	USB	bus	standard	

94	



15/09/17	

48	

2	

•  WEEK	11:	
–  Pipelining	the	MIPS32	data	path	
–  Pipeline	hazards:	structural,	data	and	control	
–  Techniques	for	improving	performance	of	the	pipeline	

95	

2	

•  WEEK	12:	
–  Mul1-cycle	opera1ons	in	MIPS32	
–  Exploi1ng	instruc1on	level	parallelism	
–  Vector	processors	
–  Graphics	processing	unit	(GPU)	
–  Evolu1on	of	Intel	processors	

96	



15/09/17	

49	

2	

END	OF	THE	COURSE	
	

THANK	YOU	FOR	ATTENDING	

97	


