
24/07/17	

1	

2	

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Introduc)on	
•  Computers	have	become	part	and	parcel	of	our	daily	lives.	

–  They	are	everywhere	(embedded	systems?)	
–  Laptops,	tablets,	mobile	phones,	intelligent	appliances.	

•  It	is	required	to	understand	how	a	computer	works.	
–  What	are	there	inside	a	computer?	
–  How	does	it	work?		

•  We	disJnguish	between	two	terms:	Computer	Architecture	
and	Computer	Organiza3on.	

2	

2	

•  Computer	OrganizaJon:	
–  Design	of	the	components	and	funcJonal	blocks	using	which	computer	

systems	are	built.	
–  Analogy:	civil	engineer’s	task	during	building	construcJon	(cement,	

bricks,	iron	rods,	and	other	building	materials).	

•  Computer	Architecture:	
–  How	to	integrate	the	components	to	build	a	computer	system	to	

achieve	a	desired	level	of	performance.	
–  Analogy:	architect’s	task	during	the	planning	of	a	building	(overall	

layout,	floorplan,	etc.).	

2	

Historical	Perspec)ve	

•  Constant	quest	of	building	automaJc	compuJng	machines	
have	driven	the	development	of	computers.	
–  Ini$al	efforts:	mechanical	devices	like	pulleys,	levers	and	gears.	
–  During	World	War	II:	mechanical	relays	to	carry	out	computaJons.	
–  Vacuum	tubes	developed:	first	electronic	computer	called	ENIAC.	
–  Semiconductor	transistors	developed	and	journey	of	miniaturizaJon	

began.	
•  SSI	à	MSI	à	LSI	à	VLSI	à	ULSI	à		….		Billions	of	transistors	per	chip	

4	

2	

PASCALINE	(1642)	
•  Mechanical	calculator	invented	by			

B.	Pascal.	
•  Could	add	and	subtract	two	numbers	

directly,	and	mulJply	and	divide	by	
repeJJon.	

5	 2	6	

•  First	automaJc	compuJng	engine	
was	designed	by	Charles	Babbage	
in	the	19th	century,	but	he	could	
not	build	it.	

•  The	first	complete	Babbage	
engine	was	built	in	2002,	153	
years	aber	it	was	designed.	
•  8000	parts.	
•  Weighed	5	tons.	
•  11	feet	in	length.	

Babbage	Engine	

24/07/17	

2	

2	

ENIAC	
(Electrical	Numerical	

Integrator	and	
Calculator)	

7	

•  Developed	at	the	University	
of	Pennsylvania.	

•  Used	18,000	vacuum	tubes,	
weighed	30	tons,	and	
occupied	a	30b	x	50b	space.	

2	

Harvard	Mark	1	
•  Built	at	the	University	of	

Harvard	in	1944,	with	support	
from	IBM.	

•  Used	mechanical	relays	
(switches)	to	represent	data.	

•  It	weighed	35	tons,	and	
required	500	miles	of	wiring.	

8	

2	

IBM	System/360	
•  Very	popular	mainframe	

computer	of	the	60s	and	
70s.	

•  Introduced	many	
advanced	architectural	
concepts	that	appeared	
in	microprocessors	
several	decades	later.	

9	 2	

Intel	Core	i7	
•  A	modern	processor	chip,	that	comes	

in	dual-core,	quad-core	and	6-core	
variants.	

•  64-bit	processor	that	comes	with	
various	microarchitectures	like	
Haswell,	Nehalem,	Sandy	Bridge,	etc.	

10	

2	11	

Genera)on	 Main	Technology	 Representa)ve	Systems	

First	(1945-54)	 Vacuum	tubes,	relays	 Machine	&	assembly	language	
ENIAC,	IBM-701	

Second	(1955-64)	 Transistors,	memories,	I/O	
processors	

Batch	processing	systems,	HLL	
IBM-7090	

Third	(1965-74)	 SSI	and	MSI	integrated	circuits	
Microprogramming	

MulJprogramming	/	Time	sharing	
IBM	360,	Intel	8008	

Fourth	(1975-84)	 LSI	and	VLSI	integrated	circuits	 MulJprocessors	
Intel	8086,	8088	

Fibh	(1984-90)	 VLSI,	mulJprocessor	on-chip	 Parallel	compuJng,	Intel	486	

Sixth	(1990	onwards)	 ULSI,	scalable	architecture,	post-
CMOS	technologies	

Massively	parallel	processors	
PenJum,	SUN	Ultra	workstaJons	

2	

Evolu)on	of	the	
Types	of	Computer	

Systems	

12	

The	future?	
•  Large-scale	IoT	based	

systems.	
•  Wearable	compuJng.	
•  Intelligent	objects.	

24/07/17	

3	

2	13	

Evolu)on	of	
PC	form	
factors	over	
the	years	

2	

Inside	a	laptop	
•  MiniaturizaJon	in	

feature	sizes	of	all	parts.	
•  Hard	drive	gegng	

replaced	by	flash-based	
memory	devices.	

•  Cooling	is	a	major	issue.	

14	

2	

Moore’s	Law	
•  Refers	to	an	observaJon	made	by	Intel	co-founder	Gordon	Moore	in	

1965.	He	noJced	that	the	number	of	transistors	per	square	inch	on	
integrated	circuits	had	doubled	every	year	since	their	invenJon.	

•  Moore's	law	predicts	that	this	trend	will	conJnue	into	the	
foreseeable	future.		

•  Although	the	pace	has	slowed,	the	number	of	transistors	per	square	
inch	has	since	doubled	approximately	every	18	months.	This	is	used	
as	the	current	definiJon	of	Moore's	law.	

15	 2	16	

2	17	

Simplified	Block	Diagram	of	a	
Computer	System	
•  All	instrucJons	and	data	are	

stored	in	memory.	
•  An	instrucJon	and	the	required	

data	are	brought	into	the	
processor	for	execuJon.	

•  Input	and	Output	devices	
interface	with	the	outside	world.	

•  Referred	to	as	von-Neumann	
architecture.	

2	

•  Inside	the	Processor	
–  Also	called	Central	Processing	Unit	(CPU).	
–  Consists	of	a	Control	Unit	and	an	Arithme3c	Logic	Unit	(ALU).	

•  All	calculaJons	happen	inside	the	ALU.	
•  The	Control	Unit	generates	sequence	of	control	signals	to	carry	out	all	
operaJons.	

–  The	processor	fetches	an	instrucJon	from	memory	for	execuJon.	
•  An	instrucJon	specifies	the	exact	operaJon	to	be	carried	out.	
•  It	also	specifies	the	data	that	are	to	be	operated	on.	
•  A	program	refers	to	a	set	of	instrucJons	that	are	required	to	carry	out	
some	specific	task	(e.g.	sorJng	a	set	of	numbers).	

18	

24/07/17	

4	

2	

•  What	is	the	role	of	ALU?	
–  It	contains	several	registers,	some	general-purpose	and	some	special-

purpose,	for	temporary	storage	of	data.	
–  It	contains	circuitry	to	carry	out	logic	operaJons,	like	AND,	OR,	NOT,	

shib,	compare,	etc.	
–  It	contains	circuitry	to	carry	out	arithmeJc	operaJons	like	addiJon,	

subtracJon,	mulJplicaJon,	division,	etc.	
–  During	instrucJon	execuJon,	the	data	(operands)	are	brought	in	and	

stored	in	some	registers,	the	desired	operaJon	carried	out,	and	the	
result	stored	back	in	some	register	or	memory.	

19	 2	

•  What	is	the	role	of	control	unit?	
–  Acts	as	the	nerve	center	that	senses	the	states	of	various	funcJonal	units	

and	sends	control	signals	to	control	their	states.	
–  To	carry	out	a	specific	operaJon	(say,	R1	ß	R2	+	R3),	the	control	unit	

must	generate	control	signals	in	a	specific	sequence.	
•  Enable	the	outputs	of	registers	R2	and	R3.	
•  Select	the	addiJon	operaJon.	
•  Store	the	output	of	the	adder	circuit	into	register	R1.	

–  When	an	instrucJon	is	fetched	from	memory,	the	operaJon	(called	
opcode)	is	decoded	by	the	control	unit,	and	the	control	signals	issued.	

20	

2	

•  Inside	the	Memory	Unit	
–  Two	main	types	of	memory	subsystems.	

•  Primary	or	Main	memory,	which	stores	the	acJve	instrucJons	and	data	for	
the	program	being	executed	on	the	processor.	

•  Secondary	memory,	which	is	used	as	a	backup	and	stores	all	acJve	and	
inacJve	programs	and	data,	typically	as	files.	

–  	The	processor	only	has	direct	access	to	the	primary	memory.	
–  In	reality,	the	memory	system	is	implemented	as	a	hierarchy	of	several	

levels.	
•  L1	cache,	L2	cache,	L3	cache,	primary	memory,	secondary	memory.	
•  ObjecJve	is	to	provide	faster	memory	access	at	affordable	cost.	

21	 2	

–  Various	different	types	of	memory	are	possible.	
a)  Random	Access	Memory	(RAM),	which	is	used	for	the	cache	and	primary	

memory	sub-systems.	Read	and	Write	access	Jmes	are	independent	of	
the	locaJon	being	accessed.	

b)  Read	Only	Memory	(ROM),	which	is	used	as	part	of	the	primary	memory	
to	store	some	fixed	data	that	cannot	be	changed.	

c)  MagneJc	Disk,	which	uses	direcJon	of	magneJzaJon	of	Jny	magneJc	
parJcles	on	a	metallic	surface	to	store	data.	Access	Jmes	vary	depending	
on	the	locaJon	being	accessed,	and	is	used	as	secondary	memory.	

d)  Flash	Memory,	which	is	replacing	magneJc	disks	as	secondary	memory	
devices.	They	are	faster,	but	smaller	in	size	as	compared	to	disk.	

22	

2	23	 2	

Input	Unit	
•  Used	to	feed	data	to	the	computer	system	from	the	external	

environment.	
–  Data	are	transferred	to	the	processor/memory	aber	appropriate	

encoding.	
•  Common	input	devices:	

–  Keyboard	
–  Mouse	
–  JoysJck	
–  Camera	

24	

24/07/17	

5	

2	25	 2	

Output	Unit	

•  Used	to	send	the	result	of	some	computaJon	to	the	outside	
world.	

•  Common	output	devices:	
–  LCD/LED	screen	
–  Printer	and	Plooer	
–  Speaker	/	Buzzer	
–  ProjecJon	system	

26	

2	27	 2	

END	OF	LECTURE	1	

28	

2	

Lecture 2: BASIC OPERATION OF A COMPUTER

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Introduc)on	

•  The	basic	mechanism	through	which	an	instrucJon	gets	
executed	shall	be	illustrated.	

•  May	be	recalled:	
–  ALU	contains	a	set	of	registers,	some	general-purpose	and	some	special-

purpose.	
–  First	we	briefly	explain	the	funcJons	of	the	special-purpose	registers	

before	we	look	into	some	examples.	

30	

24/07/17	

6	

2	

For	Interfacing	with	the	Primary	Memory	
•  Two	special-purpose	registers	are	used:	

–  Memory	Address	Register	(MAR):	Holds	the	
address	of	the	memory	locaJon	to	be	accessed.	

–  Memory	Data	Register	(MDR):	Holds	the	data	
that	is	being	wrioen	into	memory,	or	will	
receive	the	data	being	read	out	from	memory.	

•  Memory	considered	as	a	linear	array	of	
storage	locaJons	(bytes	or	words)	each	
with	unique	address.	

31	

Memory	

0	
1	
2	
3	
4	
5	

1023	

Address	

2	32	

PRIMARY	
MEMORY		PROCESSOR	

M
A	
R	

M
D	
R	

Address	

Data	

Control	Signals	

2	

•  To	read	data	from	memory	
a)  Load	the	memory	address	into	MAR.	
b)  Issue	the	control	signal	READ.	
c)  The	data	read	from	the	memory	is	stored	into	MDR.	

•  To	write	data	into	memory	
a)  Load	the	memory	address	into	MAR.	
b)  Load	the	data	to	be	wrioen	into	MDR.	
c)  Issue	the	control	signal	WRITE.	

33	 2	

For	Keeping	Track	of	Program	/	Instruc)ons	

•  Two	special-purpose	registers	are	used:	
–  Program	Counter	(PC):	Holds	the	memory	address	of	the	next	

instrucJon	to	be	executed.	
•  AutomaJcally	incremented	to	point	to	the	next	instrucJon	when	an	
instrucJon	is	being	executed.	

–  Instruc3on	Register	(IR):	Temporarily	holds	an	instrucJon	that	has	
been	fetched	from	memory.	
•  Need	to	be	decoded	to	find	out	the	instrucJon	type.	
•  Also	contains	informaJon	about	the	locaJon	of	the	data.	

34	

2	

Architecture	of	the	Example	Processor	

35	

Memory	

MAR	

PC	

IR	

MDR	
Control	

ALU	

R0	
R1	
.	
.	
	

Rn-1	
n	General	Purpose	Registers	(GPR)	

Processor	

2	

Example	Instruc)ons	

•  We	shall	illustrate	the	process	of	instrucJon	execuJon	with	the	
help	of	the	following	two	instrucJons:	
a)  ADD			R1,	LOCA	

Add	the	contents	of	memory	locaJon	LOCA	(i.e.	address	of	the	memory	
locaJon	is	LOCA)	to	the	contents	of	register	R1.	
R1	ß	R1	+	Mem[LOCA]	

b)  ADD			R1,	R2	
Add	the	contents	of	register	R2	to	the	contents	of	register	R1.	
R1	ß	R1	+	R2	

36	

24/07/17	

7	

2	

ExecuJon	of		ADD		R1,LOCA	
•  Assume	that	the	instrucJon	is	stored	in	memory	locaJon	1000,	the	iniJal	value	of	R1	

is	50,	and	LOCA	is	5000.	
•  Before	the	instrucJon	is	executed,	PC	contains	1000.	
•  Content	of	PC	is	transferred	to	MAR.					 	 	MAR	ß	PC	
•  READ	request	is	issued	to	memory	unit.	
•  The	instrucJon	is	fetched	to	MDR.			 	 	MDR	ß	Mem[MAR]	
•  Content	of	MDR	is	transferred	to	IR.		 	 	IR	ß	MDR	
•  PC	is	incremented	to	point	to	the	next	instrucJon. 	PC	ß	PC	+	4	
•  The	instrucJon	is	decoded	by	the	control	unit.	
	

37	

ADD		R1	 5000	

2	

•  LOCA	(i.e.	5000)	is	transferred	(from	IR)	to	MAR. 	MAR	ß	IR[Operand]	
•  READ	request	is	issued	to	memory	unit.	
•  The	data	is	fetched	to	MDR.		 	 	 	MDR	ß	Mem[MAR]	
•  The	content	of	MDR	is	added	to	R1.	 	 	R1	ß	R1	+	MDR	

38	

The	steps	being	carried	out	are	called	micro-operaJons:	
MAR		ß	PC	
MDR	ß	Mem[MAR]	
IR	 	ß	MDR	
PC	 	ß	PC	+	4	
MAR		ß	IR[Operand]	
MDR	ß	Mem[MAR]	
R1	 	ß	R1	+	MDR	

2	

1.  PC		 	=			1000	
2.  MAR	 	=			1000	
3.  PC 	 	=			PC	+	4		=		1004	
4.  MDR 	=			ADD	R1,	LOCA	
5.  IR 	 	=			ADD	R1,	LOCA	
6.  MAR 	=			LOCA		=		5000	
7.  MDR 	=			75	
8.  R1 	 	=			R1	+	MDR		=	50	+	75	=	125	

39	

Address	 Content	

1000	 ADD	R1,	LOCA	

1004	 …	

5000	 75	

50	R1	

LOCA	

125	

2	

ExecuJon	of		ADD		R1,R2	
•  Assume	that	the	instrucJon	is	stored	in	memory	locaJon	1500,	the	iniJal	value	of	R1	

is	50,	and	R2	is	200.	
•  Before	the	instrucJon	is	executed,	PC	contains	1500.	
•  Content	of	PC	is	transferred	to	MAR.					 	 	 	MAR	ß	PC	
•  READ	request	is	issued	to	memory	unit.	
•  The	instrucJon	is	fetched	to	MDR.			 	 	 	MDR	ß	Mem[MAR]	
•  Content	of	MDR	is	transferred	to	IR.		 	 	 	IR	ß	MDR	
•  PC	is	incremented	to	point	to	the	next	instrucJon. 		 	PC	ß	PC	+	4	
•  The	instrucJon	is	decoded	by	the	control	unit.	
•  R2	is	added	to	R1. 	 	 	 	 	R1	ß	R1	+	R2	
	

40	

ADD		R1,	R2	

2	

Address	 InstrucJon	

1500	 ADD	R1,	R2	

1504	 …	

1.  PC		 	=		1500	
2.  MAR	 	=		1500	
3.  PC 	 	=		PC	+	4		=		1504	
4.  MDR 	=		ADD	R1,	R2	
5.  IR 	 	=		ADD	R1,	R2	
6.  R1 	 	=		R1	+	R2		=			250	

41	

50	R1	

200	R2	

250	

2	

Bus	Architecture	
•  The	different	funcJonal	modules	must	be	connected	in	an	

organized	manner	to	form	an	operaJonal	system.	
•  Bus	refers	to	a	group	of	lines	that	serves	as	a	connecJng	path	

for	several	devices.	
•  The	simplest	way	to	connect	the	funcJonal	unit	is	to	use	the	

single	bus	architecture.	
–  Only	one	data	transfer	allowed	in	one	clock	cycle.	
–  For	mulJ-bus	architecture,	parallelism	in	data	transfer	is	allowed.	

42	

24/07/17	

8	

2	

System-Level	Single	Bus	Architecture	

43	

Input	 Output	 Memory	 Processor	

2	

System-Level	Two-Bus	Architecture	

44	

Input	
Device	

Output	
Device	

Memory	Processor	

I/O	Processor	

2	

Single-Bus	Architecture	Inside	the	Processor	
•  There	is	a	single	bus	inside	the	processor.	

–  ALU	and	the	registers	are	all	connected	via	the	single	bus.	
–  This	bus	is	internal	to	the	processor	and	should	not	be	confused	with	the	external	

bus	that	connects	the	processor	to	the	memory	and	I/O	devices.	

•  A	typical	single-bus	processor	architecture	is	shown	on	the	next	slide.	
–  Two	temporary	registers	Y	and	Z	are	also	included.	
–  Register	Y	temporarily	holds	one	of	the	operands	of	the	ALU.	
–  Register	Z	temporarily	holds	the	result	of	the	ALU	operaJon.	
–  The	mulJplexer	selects	a	constant	operand	4	during	execuJon	of	the	micro-

operaJon:	PC	ß	PC	+	4.	

45	 2	

	
								

46	

Internal	Processor	Bus	

PC	

MAR	

MDR	

Y	
IR	

R0	

R1	

Rn-1	

InstrucJon	
Decoding	and	
Control	Unit	

Z	

MEMORY	

4	

FuncJon	
select	

Select	

ALU	

Control	
signals	

MUX	
.	.	.	

.	.	.	

Carry-in	

2	

Mul)-Bus	Architectures	

•  Modern	processors	have	mulJple	buses	that	connect	the	
registers	and	other	funcJonal	units.	
–  Allows	mulJple	data	transfer	micro-operaJons	to	be	executed	in	the	

same	clock	cycle.	
–  Results	in	overall	faster	instrucJon	execuJon.	

•  Also	advantageous	to	have	mulJple	shorter	buses	rather	than	
a	single	long	bus.	
–  Smaller	parasiJc	capacitance,	and	hence	smaller	delay.	

47	 2	

END	OF	LECTURE	2	

48	

24/07/17	

9	

2	
49	

Lecture 3: MEMORY ADDRESSING AND LANGUAGES

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Overview	of	Memory	OrganizaJon	
•  Memory	is	one	of	the	most	important	sub-systems	of	a	computer	that	

determines	the	overall	performance.	
•  Conceptual	view	of	memory:	

–  Array	of	storage	locaJons,	with	each	storage	locaJon	having	a	unique	address.	
–  Each	storage	locaJon	can	hold	a	fixed	amount	of	informaJon	(mulJple	of	bits,	

which	is	the	basic	unit	of	data	storage).	

•  A	memory	system	with	M	locaJons	and	N	bits	per	locaJon,	is	referred	to	
as	an	M	x	N	memory.	
–  Both	M	and	N	are	typically	some	powers	of	2.	
–  Example:	1024	x	8,	65536	x	32,	etc.	

50	

2	

Some	Terminologies	
•  Bit:	 	 	A	single	binary	digit	(0	or	1).	
•  Nibble:	 	CollecJon	of	4	bits.	
•  Byte:	 	CollecJon	of	8	bits.	
•  Word:	 	Does	not	have	a	unique	definiJon.	
– Varies	from	one	computer	to	another;	typically	32	
or	64	bits.	

51	 2	

How	is	Memory	Organized?	
•  Memory	is	oben	byte	organized.	

–  Every	byte	of	the	memory	has	a	unique	address.	
•  MulJple	bytes	of	data	can	be	accessed	by	an	instrucJon.	

–  Example:	Half-word	(2	bytes),	Word	(4	bytes),	Long	Word	(8	
bytes).	

•  For	higher	data	transfer	rate,	memory	is	oben	organized	
such	that	mulJple	bytes	can	be	read	or	wrioen	
simultaneously.	
–  Necessary	to	bridge	the	processor-memory	speed	gap.	
–  Shall	be	discussed	later	in	detail.	

52	

2	53	

Processor-Memory	
Performance	Gap	
•  With	technological	

advancements,	both	
processor	and	memory	are	
becoming	faster.	

•  However,	the	speed	gap	is	
steadily	increasing	

•  Special	techniques	are	this	
needed	to	bridge	this	gap.	
•  Cache	memory	
•  Memory	interleaving	

2	

How	do	we	Specify	Memory	Sizes?	
Unit	 Bytes	 In	Decimal	

8	bits										(B)	 1	or	20	 100	

Kilobyte					(KB)	 1024	or	210	 103	

Megabyte		(MB)	 1,048,576	or	220	 106	

Gigabyte				(GB)	 1,073,741,824	or	230	 109	

Terabyte					(TB)	 1,099,511,627,776	or	240	 1012	

Petabyte					(PB)	 250	 1015	

Exabyte							(EB)	 260	 1018	

Zeoabyte				(ZB)	 270	 1021	

54	

24/07/17	

10	

2	

•  If	there	are	n	bits	in	the	address,	
the	maximum	number	of	
storage	locaJons	can	be	2n.	
–  For	n=8,	256	locaJons.	
–  For	n=16,	64K	locaJons.	
–  For	n=20,	1M	locaJons.	
–  For	n=32,	4G	locaJons.	

•  Modern-day	memory	chips	can	
store	several	Gigabits	of	data.	
–  Dynamic	RAM	(DRAM).	

55	

MEMORY	

Address	
(n	bits)	
Data	

(m	bits)	

RD	 WR	 EN	

2	56	

Address	 	Contents	

0000	0000	 0000	0000	0000	0001	

0000	0001	 0000	0100	0101	0000	

0000	0010	 1010	1000	0000	0000	

An	example:		28	x	16	memory	

1111	1111	 1011	0000	0000	1010	

:	
	

:	
	

2	

Some	Examples	
1.  A	computer	has	64	MB	(megabytes)	of	byte-addressable	memory.	How	

many	bits	are	needed	in	the	memory	address?	
–  Address	Space	=	64	MB	=	26	X	220		B	=	226	B	
–  	If	the	memory	is	byte	addressable,	we	need	26	bits	of	address.		

2.  A	computer	has	1	GB	of	memory.	Each	word	in	this	computer	is	32	bits.	
How	many	bits	are	needed	to	address	any	single	word	in	memory?	
–  Address	Space	=	1	GB	=	230	B	
–  1	word	=	32	bits	=	4	B			
–  	We	have	230	/	4		=	228		words	
–  Thus,	we	require	28	bits	to	address	each	word.	

57	 2	

Byte	Ordering	ConvenJons	
•  Many	data	items	require	mulJple	bytes	

for	storage.	
•  Different	computers	use	different	data	

ordering	convenJons.	
–  Low-order	byte	first	
–  High-order	byte	first	

•  Thus	a	16-bit	number	11001100	10101010	
can	be	stored	as	either:	

58	

Data	Type	 Size	(in	Bytes)	
Character	 1	

Integer	 4	

Long	integer	 8	

FloaJng-point	 4	

Double-precision	 8	

Typical	data	sizes	

11001100	 10101010	 10101010	 11001100	or	

2	

•  The	two	convenJons	have	been	named	as:	
a)  Liole	Endian	

•  The	least	significant	byte	is	stored	at	lower	address		followed	by	the	
most	significant	byte.	Examples:	Intel	processors,	DEC	alpha,	etc.	

•  Same	concept	followed	for	arbitrary	mulJ-byte	data.	

b)  Big	Endian	
•  The	most	significant	byte	is	stored	at	lower	address	followed	by	the	

least	significant	byte.	Examples:	IBM’s	370	mainframes,	Motorola	
microprocessors,	TCP/IP,	etc.		

•  Same	concept	followed	for	arbitrary	mulJ-byte	data.	

59	 2	

An	Example	
•  Represent	the	following	32-bit	number	in	both	Liole-Endian	and	Big-Endian	

in	memory	from	address	2000	onwards:	
01010101	00110011	00001111	11000011	

60	

Big	Endian	

Address	 Data	

2000	 01010101	

2001	 00110011	

2002	 00001111	

2003	 11000011	

Li_le	Endian	

Address	 Data	

2000	 11000011	

2001	 00001111	

2002	 00110011	

2003	 01010101	

24/07/17	

11	

2	

Memory	Access	by	InstrucJons	
•  The	program	instrucJons	and	data	are	stored	in	memory.	

–  In	von-Neumann	architecture,	they	are	stored	in	the	same	memory.	
–  In	Harvard	architecture,	they	are	stored	in	different	memories.	

•  For	execuJng	the	program,	two	basic	operaJons	are	required.	
a)  Load:	The	contents	of	a	specified	memory	locaJon	is	read	into	a	

processor	register.	 	 	LOAD		R1,	2000	
b)  Store:	The	contents	of	a	processor	register	is	wrioen	into	a	specified	

memory	locaJon. 	 	 	STORE		2020,	R3	

61	 2	

An	Example	
•  Compute	S	=	(A	+	B)	–	(C	–	D)		

			LOAD				R1,A	
			LOAD				R2,B	
			ADD						R3,R1,R2 	//	R3	=	A	+	B	
			LOAD				R1,C	
			LOAD				R2,D	
			SUB						R4,R1,R2 	//	R4	=	C	–	D		
			SUB						R3,R3,R4 	//	R3	=	R3	–	R4	
			STORE		S,R3	

62	

2	

Machine,	Assembly	and	High	Level	Language	
•  Machine	Language	

–  NaJve	to	a	processor:	executed	directly	by	hardware.	
–  InstrucJons	consist	of	binary	code:	1’s	and	0’s.	

•  Assembly	Language	
–  Low-level	symbolic	version	of	machine	language.		
–  One	to	one	correspondence	with	machine	language.	
–  Pseudo	instrucJons	are	used	that	are	much	more	readable	and	easy	to	use.	

•  High-Level	Language	
–  Programming	languages	like	C,	C++,	Java.	
–  More	readable	and	closer	to	human	languages.	

63	 2	

Assemblers	and	Compilers	
•  Assembler	
–  Translates	an	assembly	language	program	to	machine	
language.	

•  Compiler	
–  Translate	a	high-level	language	programs	to	assembly/
machine	language.	

–  The	translaJon	is	done	by	the	compiler	directly,	or	
–  The	compiler	first	translates	to	assembly	language	and	then	
the	assembler	converts	it	to	machine	code.	

64	

2	

Compiler	and	Assembler	

65	

High-level	
language	

Assembly	
language	

Machine	code	

Compiler	

Compiler	

Assembler	

Alterna)ve	2	

2	

•  The	compiler	or	assembler	may	run	on	the	naJve	machine	for	which	the	
target	code	is	being	generated,	or	can	be	run	on	another	machine.	
–  Called	cross-assembler	or	cross-compiler.	

•  Example	1:	An	8085	cross-assembler	is	running	on	a	desktop	PC	which	
generates	8085	machine	code.	

•  Example	2:	An	ARM	embed-C	cross	compiler	is	running	on	desktop	PC	
which	generates	ARM	machine	code	for	an	embedded	development	
board.	

66	

24/07/17	

12	

2	

END	OF	LECTURE	3	

67	 2	
68	

Lecture 4: SOFTWARE AND ARCHITECTURE TYPES

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

IntroducJon	
•  A	sobware	or	a	program	consists	of	a	set	of	instrucJons	

required	to	solve	a	specific	problem.	
–  A	program	to	sort	a	set	of	numbers.	
–  A	program	to	find	the	roots	of	a	quadraJc	equaJon.	
–  A	program	to	find	the	inverse	of	a	matrix.	
–  The	C	compiler	that	translates	a	C	program	to	machine	language.	
–  The	editor	program	that	helps	us	in	creaJng	a	document.	
–  The	operaJng	system	that	helps	us	in	using	the	computer	system.	

69	 2	

Types	of	Programs	
•  Broadly	we	can	classify	programs/sobware	into	
two	types:	
a) ApplicaJon	Sobware	
•  Which	helps	the	user	to	solve	a	parJcular	user-level	

problem.	
•  May	need	system	sobware	for	execuJon.	

b) System	Sobware	
•  A	collecJon	of	programs	that	helps	the	users	to	create,	

analyze	and	run	their	programs.	

70	

2	

(a)	Applica3on	SoYware	
•  ApplicaJon	sobware	helps	users	solve	parJcular	problems.	
•  In	most	cases,	applicaJon	sobware	resides	on	the	

computer’s	hard	disk	or	removable	storage	media	(DVD,	USB	
drive,	etc.).	

•  Typical	examples:	
–  Financial	accounJng	package	
–  MathemaJcal	packages	like	MATLAB	or	MATHEMATICA	
–  An	app	to	book	a	cab	
–  An	app	to	monitor	the	health	of	a	person	

71	 2	

(b)	System	SoYware	
•  System	sobware	is	a	collecJon	of	programs,	which	helps	users	run	other	

programs.	

•  Typical	operaJons	carried	out	by	system	sobware:	
–  Handling	user	requests	
–  Managing	applicaJon	programs	and	storing	them	as	files	
–  File	management	in	secondary	storage	devices	
–  Running	standard	applicaJons	such	as	word	processor,	internet	browser,	etc.	
–  Managing	I/O	units	
–  Program	translaJon	from	source	form	to	object	form	
–  Linking	and	running	user	programs	

72	

24/07/17	

13	

2	

•  Some	very	commonly	used	system	sobware:	
– OperaJng	system	(WINDOWS,	LINUX,	MAC/OS,	
ANDROID,	etc.)	
•  Instance	of	a	program	that	never	terminates.	
•  The	program	conJnues	running	unJl	either	the	machine	is	
switched	off	or	the	user	manually	shuts	down	the	machine.	

–  Compilers	and	assemblers	
–  Linkers	and	loaders	
–  Editors	and	debuggers	

73	 2	

OperaJng	System	
•  Provides	an	interface	between	

computer	hardware	and	users.	
•  Two	layers:	

a)  Kernel:	contains	low-level	
rouJnes	for	resource	
management.	

b)  Shell:	provides	an	interface	for	
the	users	to	interact	with	the	
computer	hardware	through	the	
kernel.	

74	

Computer	
Hardware	

Kernel	

Shell	

Users	&	Applica3on	SoYware	

2	

•  The	OS	is	a	collecJon	of	rouJnes	that	is	used	to	control	
sharing	of	various	computer	resources	as	they	execute	
applicaJon	programs.	
–  Typical	resources:	Processor,	Memory,	Files,	I/O	devices,	etc.	

•  These	tasks	include:	
–  Assigning	memory	and	disk	space	to	program	and	data	files.	
–  Moving	data	between	I/O	devices,	memory	and	disk	units.	
–  Handling	I/O	operaJons,	with	parallel	operaJons	where	possible.	
–  Handling	mulJple	user	programs	that	are	running	at	the	same	
Jme.	

75	 2	

•  Depending	on	the	intended	use	of	the	computer	system,	the	
goal	of	the	OS	may	differ.	
–  Classical	mulJ-programming	systems	

•  Several	user	programs	loaded	in	memory.	
•  Switch	to	another	program	when	one	program	gets	blocked	due	to	I/O.	
•  ObjecJve	is	to	maximize	resource	uJlizaJon.	

–  Modern	Jme-sharing	systems	
•  Widely	used	because	every	user	can	now	afford	to	have	a	separate	
terminal.	

•  Processor	Jme	shared	among	a	number	of	interacJve	users.	
•  ObjecJve	is	to	reduce	the	user	response	Jme.	

76	

2	

–  Real-Jme	systems	
•  Several	applicaJons	are	running	with	specific	deadlines.	
•  Deadlines	can	be	either	hard	or	sob.	
•  Interrupt-driven	operaJon	–	processor	interrupted	when	a	task	arrives.	
•  Examples:	missile	control	system,	industrial	manufacturing	plant,	paJent	
health	monitoring	and	control	system,	automoJve	control	system,	etc.	

–  Mobile	(phone)	systems	
•  Here	user	responsiveness	is	the	most	important.	
•  SomeJmes	a	program	that	makes	the	system	slow	or	hogs	too	much	
memory	may	be	forcibly	stopped.	

77	 2	

ClassificaJon	of	Computer	
Architecture	

•  Broadly	can	be	classified	into	two	types:	
a)  Von-Neumann	architecture	
b)  Harvard	architecture	

• How	is	a	computer	different	from	a	calculator?	
– They	have	similar	circuitry	inside	(e.g.	for	doing	
arithmeJc).	

– In	a	calculator,	user	has	to	interacJvely	give	the	
sequence	of	commands.	

– In	contrast,	a	computer	works	using	the	stored-
program	concept.	

– Write	a	program,	store	it	in	memory,	and	run	it	in	
one	go.	

78	

24/07/17	

14	

2	

von-Neumann	Architecture	
•  InstrucJons	and	data	are	stored	in	the	

same	memory	module.	
•  More	flexible	and	easier	to	

implement.	
•  Suitable	for	most	of	the	general	

purpose	processors.	
•  General	Disadvantage:	

–  The	processor-memory	bus	acts	as	
the	booleneck.	

–  All	instrucJons	and	data	are	moved	
back	and	forth	through	the	pipe.	

	

79	

Processor	
Program	/	

Data	
Memory	

2	

Harvard	Architecture		

•  Separate	memory	for	program	and	data.	
–  InstrucJons	are	stored	in	program	memory	

and	data	are	stored	in	data	memory.	

•  InstrucJon	and	data	accesses	can	be	done	
in	parallel.	

•  Some	microcontrollers	and	pipelines	with	
separate	instrucJon	and	data	caches	follow	
this	concept.	

•  The	processor-memory	booleneck	remains.	

80	

Processor	

Program	
Memory	

Data	
Memory	

2	

Emerging	Architectures	
•  Several	architectural	concepts	have	been	proposed	that	deviate	significantly	

from	the	von-Neumann	or	Harvard	model.	
•  There	is	a	proposal	for	in-memory	compuJng	architecture,	where	storage	

and	computaJon	can	be	done	in	the	same	funcJonal	unit.	
–  Memristors	are	projected	to	make	this	possible	in	the	near	future.	
–  Memristors	can	be	used	in	high	capacity	non-volaJle	resisJve	memory	systems.	
–  Memristors	within	the	memory	can	also	be	controlled	to	carry	out	some	

computaJons.	

81	 2	

Pipeline	in	ExecuJng	InstrucJons	
•  InstrucJon	execuJon	is	typically	divided	into	5	stages:	

–  InstrucJon	Fetch	(IF)	
–  InstrucJon	Decode	(ID)	
–  ALU	operaJon	(EX)	
–  Memory	Access	(MEM)	
–  Write	Back	result	to	register	file	(WB)	

•  These	five	stage	can	be	executed	in	an	overlapped	fashion	in	a	pipeline	
architecture.	
–  Results	in	significant	speedup	by	overlapping	instrucJon	execuJon.	

	 82	

2	

Basic	5-stage	Pipelining	Diagram	
InstrucJon	 Pipeline	Stage	

1	 IF	 ID	 EX	 MEM	 WB	

2	 IF	 ID	 EX	 MEM	 WB	

3	 IF	 ID	 EX	 MEM	 WB	

4	 IF	 ID	 EX	 MEM	

5	 IF	 ID	 EX	

Clock	
Cycle	 1	 2	 3	 4	 5	 6	 7	

83	 2	

How	can	Harvard	Architecture	
Help?	

•  In	clock	cycle	4,	instrucJon	4	is	trying	to	fetch	
an	instrucJon	(IF),	while	instrucJon	1	may	be	
trying	to	access	data	(MEM).	
–  In	von-Neumann	architecture,	one	of	these	two	
operaJons	will	have	to	wait	resulJng	in	pipeline	
slowdown.	

–  In	Harvard	architecture,	the	operaJons	can	go	on	
without	any	speed	penalty	as	the	instrucJon	and	
data	memories	are	separate.	

84	

24/07/17	

15	

2	

END	OF	LECTURE	4	

85	 2	
86	

Lecture 5: INSTRUCTION SET ARCHITECTURE

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

IntroducJon	
•  InstrucJon	Set	Architecture	(ISA)	

–  Serves	as	an	interface	between	sobware	and	hardware.	
–  Typically	consists	of	informaJon	regarding	the	programmer’s	view	
of	the	architecture	(i.e.	the	registers,	address	and	data	buses,	etc.).	

–  Also	consists	of	the	instrucJon	set.	
•  Many	ISA’s	are	not	specific	to	a	parJcular	computer	

architecture.	
–  They	survive	across	generaJons.	
–  Classic	examples:	IBM	360	series,	Intel	x86	series,	etc.	

87	 2	

InstrucJon	Set	Design	Issues	
•  Number	of	explicit	operands:	

–  0,	1,	2	or	3.	
•  LocaJon	of	the	operands:	

–  Registers,	accumulator,	memory,	accumulator.	

•  SpecificaJon	of	operand	locaJons:	
–  Addressing	modes:	register,	immediate,	indirect,	relaJve,	etc.	

•  Sizes	of	operands	supported:	
–  Byte	(8-bits),	Half-word	(16-bits),	Word	(32-bits),	Double	(64-bits),	etc.	

•  Supported	operaJons:	
–  ADD,	SUB,	MUL,	AND,	OR,	CMP,	MOVE,	JMP,	etc.	

88	

2	

EvoluJon	of	InstrucJon	Sets	
1.  Accumulator	based: 	 	1960’s	 	 	(EDSAC,	IBM	1130)	
2.  Stack	based: 	 	 	1960-70	 	(Burroughs	5000)	
3.  Memory-Memory	based: 	1970-80	 	(IBM	360)	
4.  Register-Memory	based: 	1970-present 	(Intel	x86)	
5.  Register-Register	based: 	1960-present 	(MIPS,	CDC	6600,	SPARC)	

89	

1:	1-address	instrucJons:	
					ADD		X			à			ACC	=	ACC	+	Mem[X]	

2:	0-address	instrucJons:	
					ADD			à			TOS	=	TOS	+	NEXT	

3:	2-	or	3-address	instrucJons:	
					ADD		A,B				à			Mem[A]	=	Mem[A]	+	Mem[B]	
					ADD		A,B,C	à		Mem[A]	=	Mem[B]	+	Mem[C]	

4:	2-address	instrucJons:	
					LOAD		R1,X			à			R1	=	Mem[X]	

5:	3-address	instrucJons:	
					ADD		R1,R2,R3			à			R1	=	R2	+	R3	

2	

Example	Code	Sequence	for	Z	=	X	+	Y	
•  Stack	machine:	

	PUSH	 	X	
	PUSH 	Y	
	ADD	
	POP 	Z	

•  The	ADD	instrucJon	pops	
two	elements	from	stack,	
adds	them,	and	pushes	
back	result.	

90	

Top	Of	Stack	

ALU	

24/07/17	

16	

2	

•  Accumulator	based	machine:	
	LOAD 	X 	//		ACC	=	Mem[X]	
	ADD 	Y 	//	ACC	=	ACC	+	Mem[Y]	
	STORE 	Z 	//	Mem[Z]	=	ACC	

•  All	instrucJons	assume	that	
one	of	the	operands	(and	also	
the	result)	is	in	a	special	
register	called	accumulator.	

91	

ACC	

ALU	

From	
memory	

2	

•  Register-Memory	machine:	
	LOAD 	R2,X 	//	R2	=	Mem[X]	
	ADD 	R2,Y 	//	R2	=	R2	+	Mem[Y]	
	STORE 	Z,R2 	//	Mem[Z]	=	R2	

•  One	of	the	operands	is	assumed	
to	be	in	register	and	another	in	
memory.	

92	

ALU	

From	
memory	

Registers	

2	

•  Register-Register	machine:	
	LOAD 	R1,X 						//	R1	=	Mem[X]	
	LOAD 	R2,Y 						//	R2	=	Mem[Y]	
	ADD 	R3,R1,R2				//	R3	=	R1	+	R2	
	STORE 	Z,R3 					//	Mem[Z]	=	R3	

•  Also	called	load-store	architecture,	
as	only	LOAD	and	STORE	
instrucJons	can	access	memory.	

93	

ALU	

Registers	

2	

About	General	Purpose	Registers	
(GPRs)	

•  Older	architectures	had	a	large	number	of	special	purpose	registers.	
–  Program	counter,	stack	pointer,	index	register,	flag	register,	accumulator,	etc.	

•  Newer	architectures,	in	contrast,	have	a	large	number	of	GPRs.	

•  Why?	
–  Easy	for	the	compiler	to	assign	some	variables	to	registers.	
–  Registers	are	much	faster	than	memory.	
–  More	compact	instrucJon	encoding	as	fewer	bits	are	required	to	specify	

registers.	
–  Many	processors	have	32	or	more	GPR’s.	

94	

2	

COMPARISON	BETWEEN	VARIOUS	
ARCHITECTURE	TYPES	

95	 2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

96	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	TOS	

24/07/17	

17	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

97	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A	

TOS	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

98	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A	

B	

TOS	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

99	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A/B	

TOS	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

100	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A/B	

A	

C	

B	

TOS	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

101	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A/B	

A	

B*C	

TOS	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

102	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A/B	

A-B*C	

TOS	

24/07/17	

18	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

103	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	A/B-(A-B*C)	

TOS	

2	

(a)	Stack	Architecture	
•  Typical	instrucJons:	

		PUSH		X,			POP		X	
		ADD,		SUB,		MUL,		DIV	

104	

•  Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
PUSH			A	
PUSH			B	
DIV	
PUSH			A	
PUSH			C	
PUSH			B	
MUL	
SUB	
SUB	
POP			Y	TOS	 Y	=	RESULT	

2	

(b)	Accumulator	Architecture	

•  Typical	instrucJons:	
		LOAD		X,			STORE		X	
		ADD		X,			SUB		X,			MUL		X,			DIV		X	

105	

					Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
LOAD				C 		
MUL						B	
STORE		D 	//	D	=	C*B	
LOAD			A	
SUB						D	
STORE		D 	//	D	=	A	–	C*B	
LOAD			A	
DIV							B	
SUB							D	
STORE			Y	

2	

(c)	Memory-Memory	Architecture	

•  Typical	instrucJons	(3	operands):	
		ADD		X,Y,Z	
		SUB			X,Y,Z	
		MUL		X,Y,Z	

•  Typical	instrucJons	(2	operands):	
		MOV		X,Y	
		ADD		X,Y	
		SUB		X,Y	
		MUL		X,Y	
	

106	

					Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
DIV 				A,B,D	
MUL				E,C,B	
SUB				E,A,E	
SUB				Y,D,E	
	
MOV			D,A	
DIV						D,B	
MOV			E,C	
MUL			E,B	
SUB				A,E	
SUB				D,A	

2	

(d)	Load-Store	Architecture	

•  Typical	instrucJons:	
		LOAD				R1,X	
		STORE			Y,R2	
		ADD							R1,R2,R3	
		SUB								R1,R2,R3	

107	

					Example:				Y	=	A	/	B	–	(A	–		C	*	B)	
LOAD				R1,A 		
LOAD				R2,B	
LOAD				R3,C	
DIV								R4,R1,R2	
MUL						R5,R3,R2	
SUB							R5,R1,R5	
SUB							R4,R4,R5	
STORE			Y,R4	

2	

Registers:	Pros	and	Cons	
•  The	load-store	architecture	forms	the	basis	of	RISC	ISA.	
– We	shall	explore	one	such	RISC	ISA,	viz.	MIPS.	

•  Helps	in	reducing	memory	traffic	once	the	memory	data	
are	loaded	into	the	registers.	

•  Compiler	can	generate	very	efficient	code.	
•  AddiJonal	overhead	for	save/restore	during	procedure	
or	interrupt	calls	and	returns.	
– Many	registers	to	save	and	restore.	

108	

24/07/17	

19	

2	

END	OF	LECTURE	5	

109	

