

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

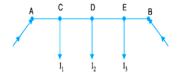
INTERNAL ASSESSMENT EXAMINATION – I- ANSWER KEY V Semester

B.E-ELECTRICAL AND ELECTRONICS ENGINEERING

19EE501 - TRANSMISSION AND DISTRIBUTION

Regulations 2019

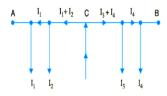
Duration : 1 Hour 30 Minutes


Date : 28.08.2024 Session: FN Maximum: 50 Marks

Answer ALL questions

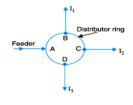
	PART A - (5 X 2 = 10 marks)							
Q.No	Question	M	CO	BL				
1	What are the various components of power system?	2	CO-1	L -2				
	Answer: The main components of a power system include:							
	1. Generation units - where electricity is generated (e.g., power plants).							
	2. Transmission lines - to carry electricity over long distances.							
	3. Substations - where voltage levels are adjusted (stepped up/down).							
	4. Distribution systems - to distribute electricity to consumers.							
	5. Loads - where electricity is consumed							
2	List the types of distribution system.	2	CO-1	L -2				
	Nature of Supply							
	AC & DC distribution							
	Nature of Connection							
	Radial distribution system							
	Ring main distribution system							
	Interconnected distribution system							
3	State the advantages of interconnected system.	2	CO-1	L -2				
	• Improved reliability - in case of a failure in one part of the system, power can be							
	supplied from another part.							

Better load management - helps in managing peak loads efficiently.			
 Economic operation - allows power to be generated in more efficient plants. What is meant by skin effect? 	2	CO-2	L -2
Answer: The skin effect is the phenomenon where alternating current (AC) ten		00-2	12 -2
to flow mainly on the surface of a conductor, leading to a reduced effective cro			
sectional area and an increased resistance as the frequency increases.			
5 Define proximity effect.	. 2	CO-2	L -2
Answer: The proximity effect occurs in conductors carrying alternating current (AC) placed close to each other, where the current distribution is influenced by			
presence of nearby conductors, causing an increase in the effective resistance.	uie		
PART B - (2 X 13 = 26 marks)			
6. (a) An industrial park is planning to implement a new direct current (I	OC) 13	CO-1	L-4
distribution system to improve energy efficiency and reliability. Disc			
the various types of DC distributors, including radial, ring, and m	esh		
configurations. Evaluate the benefits and drawbacks of each type in ter	rms		
of system reliability, fault tolerance, and maintenance requireme	nts.		
Analyze which DC distribution type would be most suitable for	the		
industrial park, considering factors such as load distribution	and		
operational efficiency.			
DC 2 Wire System DC 3 wire System			
be 3 wife system			
† †			
Neutral Neutral			
wire W 2v			
<u> </u>			
Distributor fed at one end			
$A I_1+I_2+I_3 C I_2+I_3 D I_3 E B$			
Current goes on Decreasing			
• The voltage across the loads away from the feeding point goes on			
I_1 I_2 I_3 decreasing.			
continuity of supply is interrupted, if fault occurs			
Distributor fed at one end			
Distributor led at one end			

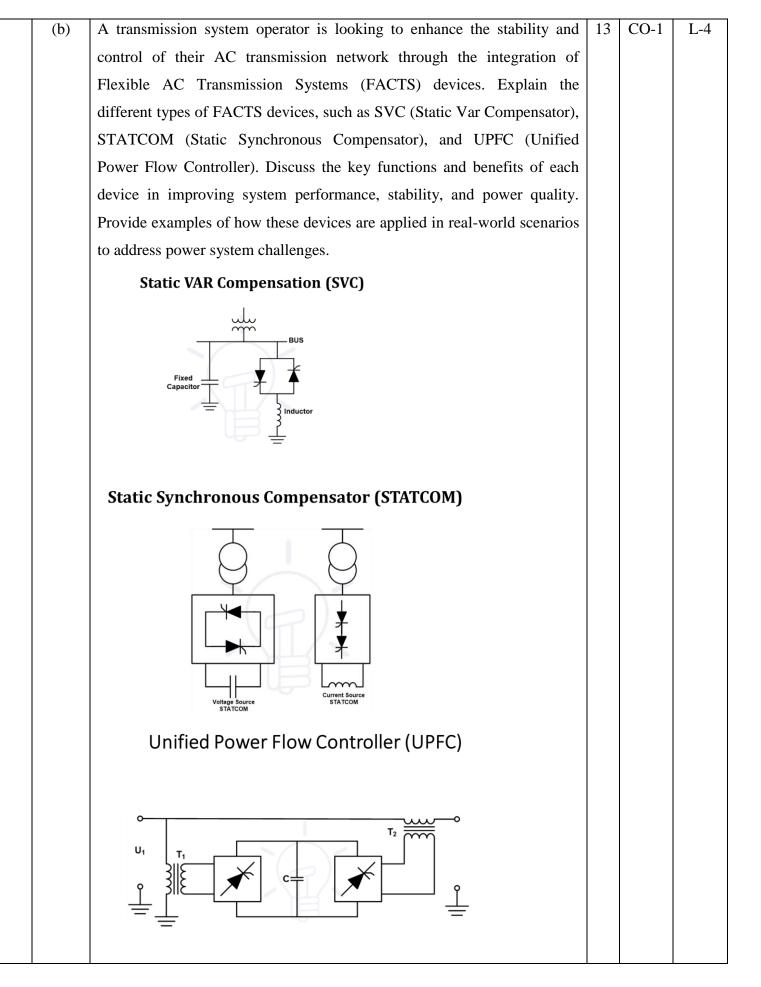

Distributor fed at both end

- continuity of supply is maintained from the other feeding point
- The area of X-section required for a doubly fed distributor is much less

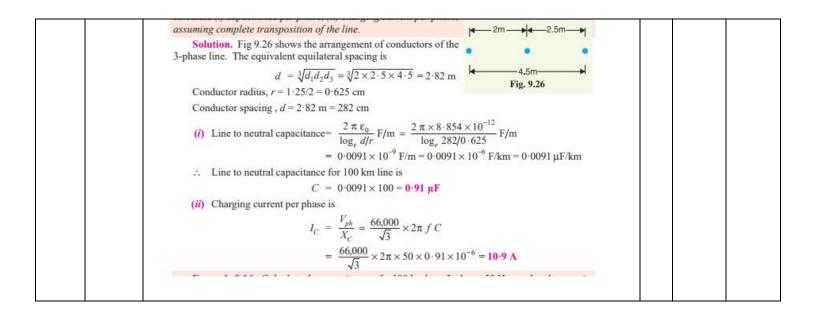
Distributor fed at both and


Distributor fed at centre

It is equivalent to two singly fed distributors, each distributor having a common feeding point and length equal to half of the total length.


Distributor fed at centre

Distributor fed at ring


- Form of a closed ring
- It is equivalent to a straight distributor fed at both ends with equal voltages

Distributor fed at ring

	Potential of 1st position, $V_1 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_3} + Q_C \log_e \frac{1}{d_2} \right)$			
	Potential of 2nd position, $V_2 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_1} + Q_C \log_e \frac{1}{d_3} \right)$			
	Potential of 3rd position, $V_3 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_2} + Q_C \log_e \frac{1}{d_1} \right)$			
	Average voltage on condutor A is			
	$V_A = \frac{1}{3} (V_1 + V_2 + V_3)$			
	$= \frac{1}{3 \times 2\pi \varepsilon_0} * \left[Q_A \log_e \frac{1}{r^3} + (Q_B + Q_C) \log_e \frac{1}{d_1 d_2 d_3} \right]$			
	As $Q_A + Q_B + Q_C = 0$, therefore, $Q_B + Q_C = -Q_A$			
	$\therefore \qquad V_A = \frac{1}{6\pi\varepsilon_0} \left[Q_A \log_e \frac{1}{r^3} - Q_A \log_e \frac{1}{d_1 d_2 d_3} \right]$			
	$= \frac{Q_A}{6\pi\epsilon_0} \log_e \frac{d_1 d_2 d_3}{r^3}$ $= \frac{1}{3} \times \frac{Q_A}{2\pi\epsilon_0} \log_e \frac{d_1 d_2 d_3}{r^3}$			
	$= \frac{Q_A}{2\pi\varepsilon_0} \log_e \left(\frac{d_1 d_2 d_3}{r^3}\right)^{1/3}$ $= \frac{Q_A}{2\pi\varepsilon_0} \log_e \frac{(d_1 d_2 d_3)^{1/3}}{r}$			
	.: Capacitance from conductor to neutral is $C_A = \frac{Q_A}{V_A} = \frac{2 \pi \epsilon_0}{\log_e \frac{\sqrt[3]{d_1 d_2 d_3}}{\sqrt[3]{d_1 d_2 d_3}}} F/m$			
	$\log_e \frac{\sqrt[4]{a_1 a_2 a_3}}{r}$			
	OR			
(b)	OR A single phase transmission line has two parallel conductors 4 m apart, the	13	CO-2	L-3
(b)		13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 $d = 400 \cos 3$ $\delta = 2 \cos 3$ $\cos 3 \cos 4 \cos 4 \cos 6$ $\cos 3 \cos 4 \cos 4 \cos 6$ $\cos 3 \cos 4 \cos 4 \cos 6$ $\cos 3 \cos 4 \cos 6$ $\cos 4 \cos 6$ $\cos 4 \cos 6$ $\cos 4 \cos 6$ $\cos 6 \cos $	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 $d = 400 \cos 3$ $\delta = 2 \cos 3$ $d = 400 \cos 3$ $d = 40$	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 $d = 400 \cos x = 2 \cos x = $	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 $d = 400 \cos x = 2 \cos x = $	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 d = 400 cm 8 = 2 cm 400 Inductance = 10 ⁴ (ps + 4 loge (40) 10 Copper conductor 400 Inductance = 10 ⁴ (1+4 loge (40) 11 copper conductor 2 2 219 x 1000 12 219 mm H Copper Inductance = 10 ⁴ (100 + 4 loge (40)) + 1000 11 Steel 400 Inductance = 10 ⁴ (100 + 4 loge (40)) + 1000	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 d = 400 cm 8 = 2 cm Loop Inductore = 10 ⁷ (ho + 4 loge (4/8)) (1) Copper conductor drop Inductore = 10 ⁷ (1+4 loge (400)) +1 = 2 · 2 9 m +1 = 2 · 2 9 m +1 Copper Inductore = 10 ⁷ (1000 + 4 loge (400/2)) +1 = 1 · 2 1 × 100 ³ × 10 ⁵ +1	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 d = 400 cm 8 = 2 cm 400 Inductance = 10 ⁴ (ps + 4 loge (40) 10 Copper conductor 400 Inductance = 10 ⁴ (1+4 loge (40) 11 copper conductor 2 2 219 x 1000 12 219 mm H Copper Inductance = 10 ⁴ (100 + 4 loge (40)) + 1000 11 Steel 400 Inductance = 10 ⁴ (100 + 4 loge (40)) + 1000	13	CO-2	L-3
(b)	A single phase transmission line has two parallel conductors 4 m apart, the radius of each conductor being 2 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100 d = 400 cm 8 = 2 cm Loop Inductore = 10 ⁷ (ho + 4 loge (4/8)) (1) Copper conductor drop Inductore = 10 ⁷ (1+4 loge (400)) +1 = 2 · 2 9 m +1 = 2 · 2 9 m +1 Copper Inductore = 10 ⁷ (1000 + 4 loge (400/2)) +1 = 1 · 2 1 × 100 ³ × 10 ⁵ +1	13	CO-2	L-3

		PART C –(1 x 14 = 14 Marks)			
8.	(a)	A 2-wire d.c. distributor cable AB is 2 km long and supplies loads of	14	CO-1	L-3
		100A, 150A, 200A and 50A situated 500 m, 1000 m, 1600 m and 2000 m			
		from the feeding point A. Each conductor has a resistance of $0.01~\Omega$ per			
		1000 m. Calculate the potential difference at each load point if a potential			
		difference of 300 V is maintained at point A			
		Solution. Fig. 13.6 shows the single line diagram of the distributor with its tapped currents. Resistance per 1000 m of distributor = 2 × 0·01 = 0·02 Ω Resistance of section AC , $R_{AC} = 0.02 \times 500/1000 = 0·01 Ω$ Resistance of section DE , $R_{CD} = 0·02 \times 500/1000 = 0·01 Ω$ Resistance of section DE , $R_{DE} = 0·02 \times 600/1000 = 0·012 Ω$ Resistance of section EB , $R_{EB} = 0·02 \times 400/1000 = 0·008 Ω$ Referring to Fig. 13.6, the currents in the various sections of the distributor are : $I_{EB} = 50 \text{ A}$; $I_{DE} = 50 + 200 = 250 \text{ A}$ $I_{CD} = 250 + 150 = 400 \text{ A}$; $I_{AC} = 400 + 100 = 500 \text{ A}$ $I_{CD} = 250 + 150 = 400 \text{ A}$; $I_{AC} = 400 + 100 = 500 \text{ A}$ $I_{CD} = 250 + 150 = 400 \text{ A}$; $I_{AC} = 400 + 100 = 500 \text{ A}$ $I_{CD} = 250 + 150 = 400 \text{ A}$; $I_{AC} = 400 + 100 = 500 \text{ A}$ $I_{CD} = 250 + 150 = 400 \text{ A}$; $I_{AC} = 400 + 100 = 500 \text{ A}$ $I_{CD} = 100 + 100 = 100 \text{ A}$ $I_{CD} = 100 + 100 = 10$			
		OR			
		A 3-phase, 50 Hz, 66 kV overhead line conductors are placed in a	14	CO-2	L-3
	(b)	horizontal plane as shown in Figure. The conductor diameter is 1.25 cm. If			
		the line length is 100 km, calculate (i) capacitance per phase, (ii) charging			
		current per phase, assuming complete transposition of the line			
					
		4.5m →			

