

TOPIC7-Recurrence relations

Recurrence Relation

An equation that expresses a_n , the general a_n of the sequence $\{a_n\}$ in terms of one or more a_n , the previous terms of the sequence, namely a_n , a_n , a_n , for all integer a_n with a_n , a_n ,

1) Find the recurrence relation for the sequence $a_n = 2n+9$, $n \ge 1$.

For
$$n \ge 1$$
, $a_n = 2n+9$

$$a_{n-1} = 2(n-1)+9 = 2n-2+9$$

$$= a_n-2$$

$$a_{n-1} = a_n - 2$$

$$\Rightarrow$$
 $a_n = a_{n-1} + 2$, with $a_0 = 9$

2) Find the recurrence relation of
$$S(n) = a^n$$
; $n \ge 1$.

Given for
$$n \ge 1$$
, $S(n) = a^n$
 $S(n-1) = a^n$
 $S(n-1) = \frac{a^n}{a}$

$$\Rightarrow S(n-1) = \frac{S(n)}{a}$$

$$\Rightarrow S(n) = a S(n-1), \text{ for } n \ge 1$$

$$\Rightarrow S(n) = a S(n-1), \text{ for } n \ge 1$$

3) Find the recurrence relation satisfying $y_n = A 3^n + B (-2)^n$

Given $y_n = A3^n + B(-2)^n \rightarrow (1)$ $y_{n+1} = A 3^{n+1} + B (-2)^{n+1}$ $y_{n+1} = 3 A 3^{n} - 2 B (-2)^{n} \longrightarrow 2$ and $y_{n+2} = A3^{n+2} + B(-2)^{n+2}$

 $y_{n+2} = 9A3^{n} + 4B(-2)^{n} \longrightarrow 3$

 $y_{n+2} - y_{n+1} - 6y_n = 9A3^n - 3A3^n - 6A3$ + 4 B (-2)"+2B (-2)"- 6B (-1)

 $y_{n+2} - y_{n+1} - 6y_n = 0$

Coimbatore - 641 107

$$a_n = 6a_{n-1} - 9a_{n-2}$$
 with $a_0 = 1$ and $a_1 = 6$

The recurrence relation can be rewritten as

 $a_n - 6a_{n-1} + 9a_{n-2} = 0$

The characteristic equation is

 $\gamma^2 - 6\gamma + 9 = 0$

Rock are $\gamma = 3.3$
 $a_n = \alpha_1 (3)^n + \alpha_2 n (3)^n \rightarrow 0$
 $a_n = \alpha_1 + \gamma \alpha_2 = 1$
 $a_n = 0$ in 0 ,

 $a_n = \alpha_1 + \gamma \alpha_2 = 1$

Sub. $n = 1$ in 0 ,

 $a_n = 1$

Sub. $n = 1$ in 0 ,

Coimbatore - 641 107

$$a_1 = \alpha_1 (3) + \alpha_2 (3) = 6$$
 $3 + 3\alpha_1 = 6$
 $\alpha_1 = 1 (3)^n + 1 \cdot n \cdot (3)^n$

Coimbatore - 641 107

 $\alpha_1 = 1 \cdot (3)^n + 1 \cdot n \cdot (3)^n$

$$= 3^{n} + n 3^{n}$$

$$\boxed{a_{n} = (1+n) 3^{n}}$$

5) solve the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ given that $a_0 = 5$, $a_1 = 9$ and $a_2 = 15$.

The recurrence relation can be rewritten us $a_n + 3a_{n-1} + 3a_{n-2} + a_{n-3} = 0$ The characteristic equation is $\gamma^3 + 3\gamma^2 + 3\gamma + 1 = 0$ $\Rightarrow (\gamma+1)(\gamma+1)(\gamma+1) = 0$

$$\therefore \quad \alpha_n = \alpha_1 \left(-1\right)^n + \alpha_2 \cdot n \cdot \left(-1\right)^n + \alpha_3 \cdot n^2 \left(-1\right)^n \longrightarrow 0$$

Put
$$n = 0$$
 in (1), we get $a_0 = \left[\alpha, = 5 \right]$

$$\alpha_{1}(-1) + \alpha_{2}(-1) + \alpha_{3}(-1) = q$$

$$-5 - \alpha_2 - \alpha_3 = 9$$

$$\alpha_2 + \alpha_3 = -14 \rightarrow 2$$

$$a_2 = 15$$
, put $n = 2$ in (1), we get

$$\alpha_2 = \alpha_1 + 2\alpha_2 + 4\alpha_3 = 15$$

$$5 + 2\alpha_1 + 4\alpha_3 = 15$$

$$\Rightarrow 2\alpha_2 + 4\alpha_3 = 10$$

$$\Rightarrow \alpha_1 + 2\alpha_3 = 5 \rightarrow 3$$

Siving 2 and 3,
1)-3
$$\Rightarrow \alpha_3 - 2\alpha_3 = -14-5$$

$$\alpha_3 = 19$$

Sub. in
$$(3)$$
, $\alpha_2 + 38 = 5 \Rightarrow \alpha_2 = -33$

Sub.
$$\alpha_1$$
, α_2 and α_3 values in (1) ,

$$a_n = 5(-1)^n - 33n(-1)^n + 19n^2(-1)^n$$

$$a_n = [5-33n+19n^2](-1)^n$$

with the initial condity
$$a_0 = 2$$
, $a_1 = 5$ and $a_2 = 15$.

•

•