

TOPIC 10-GENERATING FUNCTIONS:

The generating function for the sequence The generating function for the sequence with terms a_0, a_1, \dots, a_n of real numbers infinite sum: $G(x) = G(s,x) = a_0 + a_1x + \dots + a_nx^n + \dots$ $= \sum_{n=0}^{\infty} a_n x^n$

Dusing generating function, solve the recurrence dation $a_n = 3 a_{n-1}$ for $n \ge 1$ with $a_0 = 2$. Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function of the sequence $\frac{1}{5}a_{nj}$ Given recurrence relation can be written as $a_n - 3a_{n-1} = 0$ Multiplying the above equation by x^n and summing from 1 to ∞ , we get

$$\Rightarrow \sum_{n=1}^{\infty} \alpha_n x^n - \sum_{n=1}^{\infty} 3 \alpha_{n-1} x^n = 0$$

$$\Rightarrow \sum_{n=1}^{\infty} \alpha_n x^n - 3x \sum_{n=1}^{\infty} \alpha_{n-1} x^{n-1} = 0$$

$$\Rightarrow (G(x) - \alpha_0) - 3x G(x) = 0$$

$$\Rightarrow G(x) \left[1 - 3x\right] = 2$$

$$G(x) = \frac{2}{1 - 3x} = 2(1 - 3x)^{-1}$$

$$= 2 \left[1 + 3x + (3x)^{\frac{1}{2}} + \cdots\right]$$

$$G(x) = 2 \sum_{n=0}^{\infty} 3^{n} x^{n}$$

$$\Rightarrow \sum_{n=0}^{\infty} a_{n} x^{n} = 2 \sum_{n=0}^{\infty} 3^{n} x^{n}$$

$$\Rightarrow a_{n} = 2 \cdot 3^{n}$$

2) solve the recurrence relation S(n+1) - 2S(n) = 4S(0) = 1, $n \ge 0$ by use generating function.

The recurrence relation can be written as

 $a_{n+1} - 2a_n - 4^n = 0$

Multiplying the above equation by x^n and summing from 0 to ∞ , we have

$$x^{n} - 2 \sum_{n=0}^{\infty} a_{n} x^{n} - \sum_{n=0}^{\infty} 4^{n} x^{n} = 0$$

$$x^{n+1} = 0$$

$$x^{n$$

$$\Rightarrow G_{1}(x) \left[\frac{1}{x}-2\right] = \frac{1}{1-4x} + \frac{1}{x}$$

$$= \frac{x+1-4x}{x(1-4x)} = \frac{1-3x}{x(1-4x)}$$

$$\Rightarrow G_{1}(x) = \frac{1-3x}{1-4x} + \frac{1}{x}$$

$$\frac{1-3x}{(1-2x)(1-4x)} = \frac{A}{1-2x} + \frac{B}{1-4x} \rightarrow 0$$

$$1-3x = A(1-4x) + B(1-2x)$$

$$1-3x = B(1-\frac{2}{4})$$
Put $x = \frac{1}{4}$, $1-\frac{3}{4} = B(1-\frac{2}{4})$

$$\frac{1}{4} = \frac{1}{2}B \Rightarrow B=\frac{1}{2}$$

Put
$$x = \frac{1}{2}$$
, $1 - \frac{3}{2} = A(1-2)$

$$A = \frac{1}{2}$$

$$G(x) = \frac{\frac{1}{2}}{1-2x} + \frac{\frac{1}{2}}{1-4x}$$

$$= \frac{1}{2} (1-2x)^{-1} + \frac{1}{2} (1-4x)^{-1}$$

$$= \frac{1}{2} \left[1+2x + (2x)^{2} + \cdots \right] + \frac{1}{2} \left[1+4x + (4x)^{2} + \cdots \right]$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} 2^{n} x^{n} + \frac{1}{2} \sum_{n=0}^{\infty} 4^{n} x^{n}$$

$$a_n = \frac{2^n}{2} + \frac{4^n}{2}$$

$$a_n = \frac{2^{n-1}}{2} + 2(4)^{n-1}$$