

SNS COLLEGE OF ENGINEERING

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE (IoT)

23ITT201 – DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

II YEAR/ III SEMESTER

UNIT 1 – COMBINATIONAL LOGIC

TOPIC -BINARY ADDER

BINARY ADD111ER /23ITT201-Digital Principles and Computer

BINARY ADDER

Alternate name

PARALLEL ADDER

Organization/D.KAVITHA /AP/CSE(IoT)/SNSCE

Alternate name

RIPPLE ADDER

BINARY ADDER /23ITT201-Digital Principles and Computer

For reference

Half adder:

• A combinational logic circuit which is designed to add two binary digits is called as a **half adder**. The half adder provides the output along with a carry value (if any)

Half adder- Truth Table

Inputs		Outputs		
Α	В	S (Sum)	C (Carry)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

K- map for Half adder

Applications of Half adder

• Half adder is used in ALU (Arithmetic Logic Unit) of computer processors to add binary bits.

- Half adder is used to realize full adder circuit.
- Half adder is used in **calculators**.
- Half adder is used to calculate addresses and tables.

			U
7	8	9	÷
4	5	6	x
1	2	3	-
0		+	=

Activity Time!!!

Lets have fun with COLOURS

RED	PINK	YELLOW	GREEN
ORANGE	BROWN	VOILET	WHITE
GRAY	BLUE	BROWN	RED
YELLOW	ORANGE	WHITE	BLUE
PINK	GRAY	RED	GREEN

For reference

Full adder:

- A combinational circuit which is designed **to add three binary digits** and produces two outputs (sum and carry) is known as a full adder.
- Thus, a full adder circuit adds three binary digits, where two are the inputs and one is the carry forwarded from the previous addition.

Full adder- Truth Table

Inputs			Outputs		
Α	В	C _{in}	S (Sum)	C _{out} (Carry)	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

- Hence, from the truth table, it is clear that the sum output of the full adder is equal to 1 when only 1 input is equal to 1 or when all the inputs are equal to 1.
- While the carry output has a carry of 1 if two or three inputs are equal to 1.

K- map for Full adder

Advantages of full adder

- Full adder provides facility to add the carry from the previous stage.
- The power consumed by the full adder is relatively less as compared to half adder.
- Full adder can be easily converted into a half subtractor just by adding a NOT gate in the circuit.
- Full adder produces higher output that half adder.
- Full adder is one of the essential part of critic digital circuits like multiplexers.
- Full adder performs operation at higher speed.

Applications of full adder

- Full adders are used in ALUs (arithmetic logic units) of CPUs of computers.
- Full adders are used in calculators.
- Full adders also help in carrying out multiplication of binary numbers.
- Full adders are also used to realize critic digital circuits like multiplexers.
- Full adders are used to generate memory addresses.
- Full adders are also used in generation of program counterpoints.
- Full adders are also used in GPU (Graphical Processing Unit).

BINARY ADDER

- A Binary Adder is a digital circuit that implements the arithmetic sum of two binary numbers supported with any length is known as a binary adder.
- It is generated using **full-adder circuits connected in sequence**. The output carries from one full-adder linked to the input carry of the next full-adder.

BINARY ADDER

- The **augend bits of A** and the **addend bits of B** is created by subscript numbers from right to left, with subscript 0 indicating the low-order bit. The carries are linked in a chain by the **full-adders**.
- The input carry to the binary adder is C₀ and the output carry is C₄. The S outputs of the full-adders create the needed sum bits.
- An **n-bit binary adder** is needed **n full-adders**.
- The output carries from each full-adder is linked to the input carry of the next-high-order full-adder.
- The n data bits for the A inputs come from one register including R1, and the n data bits for the B inputs come from another register including R2. The sum can be transferred to a third register or one of the source registers (R 1 or R2), restoring its earlier content.

SUMMARY

Thank You!