Reverted gear train

Special type of compound gear train where the first and the last gear have the same axis. Eg. Clock wherein minute and hour hands are attached to gears on the same axis, back gear of a lathe.

 $R_{A} + R_{B} = R_{C} + R_{D}_{(m=D/T)}$ $T_{A} + T_{B} = T_{C} + T_{D}$

Epicyclic Gear Train

- Axes are fixed in simple and compound gear trains
- In Epicyclic gear trains, the axes of some of the gears revolve about one fixed axis.

An Epicyclic gear train can provide larger velocity ratio for a given number of gears.

Applications: differential gear of automobile, wrist watches, hoists, pulley blocks

https://youtu.be/sNBooUaVf7w

- Various methods are employed to determine the velocity ratio of an epicyclic gear train.
- Relative velocity method
- Tabular or Algebraic method

Tabular or Algebraic method

Operation	Revolution of the Arm C	Revolution of the gear A	Revolution of the gear B
Arm C fixed	0	+1	– (T _A /T _B)
Multiply by <i>x</i>	0	+ <i>x</i>	- <i>x</i> . (T _A /T _B)
Add y	+ y	<i>x</i> + <i>y</i>	y - x . (T _A /T _B)

Torques in epicyclic gear train

• Assuming that different gears constituting the epicyclic gear are moving with uniform speed,

Algebraic sum of the torques applied externally must be equal to zero.

- In three torques are applied externally,
- T_d driving torque
- T_r resisting torque
- T_h holding down or braking torque therefore, $T_d + T_r + T_h = 0$

- Neglecting friction losses of teeth during mesh and at bearings, the total energy must be equal to zero.
- Therefore, $T_d \cdot \omega_d + T_r \cdot \omega_r + T_h \cdot \omega_h = 0$ Since $\omega_h = 0$, $T_d \cdot \omega_d + T_r \cdot \omega_r = 0$

Sun and Planet Gear

Speeds in Sun and Planet gear Tabular or Algebraic method

Operation	Revoluti on of the Arm C	Revoluti on of the Sun gear S	Revolution of the Planer gear P	Revolution of the Annular wheel A
Arm C fixed	0	+1	- (Т _S /Т _Р)	$- (T_{S}/T_{P}) \cdot (T_{P}/T_{A}) = - (T_{S}/T_{A})$
Multiply by x	0	+ <i>x</i>	- <i>x</i> . (T _S /T _P)	$-x \cdot (T_S/T_A)$
Add y	+ y	x + y	y - x . (T _S /T _P)	$y - x \cdot (T_S/T_A)$

Numerical example 1

The number of teeth on S1=24, A1=96, S2=30 ,A2=90.

If the shaft P rotates at 1980 rpm and annular wheel A2 is fixed, find the speed of the shaft Q. Also, find the speed of the shaft Q if the annular wheel A2 rotates at 198 rpm in the same direction as that of S1.

Numerical Example

Operatio n	Arm	S ₁	P ₁	A ₁	S ₂	P ₂	A ₂
Arm fixed	0	+1	- (24/P ₁)	-(24/96) = - (1/4)	-(24/96) = -(1/4)	+(24/96) × (30/P ₂)	+(24/96) × (30/P ₂) × (P2/90)= + (1/12)
Arm fixed + x revolutio n to S1	0	+ <i>x</i>		- (1/4) x	- (1/4) x		+(1/12). <i>x</i>
Add + y to arm	+ y	<i>x</i> + <i>y</i>		- (1/4)x +y	- (1/4)x +y		(1/12) <i>x</i> + <i>y</i>

Numerical example Case 1:

- Annular wheel A₂ is fixed.
- Therefore (1/12)x + y = 0
- or x = -12 y
- Speed $S_1 = x + y = 1980 \ rpm$
- -12 y +y=1980
- Speed of arm i.e shaft Q = y = -1980/11
 - = 180 rpm
- Shaft Q rotates at 180 rpm in the direction opposite to that of the shaft P.
- *x*=1980-*y*=1980+180=2160 rpm
- Speed of $S_2 = -(1/4)x + y = -2180/4 180$
- $= -545 180 = -725 \ rpm$

Case 2

- Speed of Annular wheel A₂ =198 rpm
- Therefore (1/12) x + y = 198
- or x = 12 (198 y)
- Speed $S_1 = x + y = 1980 \ rpm$
- 12(198-y)+y=1980
- 12×198 -11 y=1980
- $y = (12 \times 198 1980)/11$
- =2×198/11=36 rpm
- Speed of arm i.e shaft Q = y = 36 rpm
- Shaft Q rotates at 36 rpm in the same direction as that of the shaft P.

Numerical example 2

- Refer to the previous numerical example.
- If the torque on the shaft P is 300 N-m, find the torque on the shaft Q and the holding down torque on A₂ when is A₂ fixed.
- $T_d \cdot \omega_d + T_r \cdot \omega_r + T_h \cdot \omega_h = 0$
- $T_d \cdot N_d + T_r \cdot N_r + T_h \cdot N_h = 0$
- $300 \times 1980 + T_r \times -180 + T_h \times 0 = 0$
- T_r = 300 x 1980/180= 3300 N-m

Numerical example 2

- Also, $T_d + T_r + T_h = 0$
- Therefore, $300 + 3300 + T_h = 0$
- or T_h = -3600 N-m

Questions on Gear trains

- 1. An epicyclic gear train is shown in the figure below. The number of teeth on the gears A, B and D are 20, 30 and 20, respectively. Gear C has 80 teeth on the inner surface and 100 teeth on the outer surface. If the carrier arm AB is fixed and the sun gear A rotates at 300 rpm in the clockwise direction, then the rpm of D in the clockwise direction is
- (A) 240
- (B) -240
- (C) 375
- (D) -375

Answer : (C) 375

Solution: when arm is fixed, it becomes simple train.

$$\frac{N_B}{N_A} = -\frac{T_A}{T_B} \qquad N_C = -\frac{T_A}{T_C} N_A = -\frac{20}{80} (-300) = 75 \ rpm$$
$$\frac{N_C}{N_B} = \frac{T_B}{T_C} \qquad N_D = -\frac{T_C}{T_D} N_C = -\frac{100}{20} (75) = -375 \ rpm = 375 \ rpm (C.W)$$
$$\frac{N_C}{N_A} = -\frac{T_A}{T_C}$$

As epicyclic gear train

$$y = 0$$

$$N_A = x + y = -300 rpm$$

$$N_C = y - x \frac{T_A}{T_C} = 0 - (-300) \frac{20}{80} = +75 rpm$$

$$N_D = -\frac{T_C}{T_D} N_C = -\frac{100}{20} (75) = -375 rpm = 375 rpm (C.W)$$

A frictionless gear train is shown in the figure. The leftmost 12-teeth gear is given a torque of 100 N-m. The output torque from the 60-teeth gear on the right in N-m is

12 Teeth

T = 100 N-m

48 Teeth

12 Teeth

60 Teeth

- (A) 5(B) 20(C) 500
- (D) 2000

$$\frac{N_4}{N_1} = \frac{T_1 T_3}{T_2 T_4} = \frac{12 \times 12}{48 \times 60} = \frac{1}{20} \qquad t_1 \times N_1 = t_4 \times N_4$$
$$t_1 \times \omega_1 = t_4 \times \omega_4 \qquad t_4 = \frac{N_1}{N_4} t_1 = 20 \ (100) = 2000 \ N - m$$

In an epicyclic gear train, shown in the figure, the outer ring gear is fixed, while the sun gear rotates counterclockwise at 100 rpm. Let the number of teeth on the sun, planet and outer gears to be 50, 25, and 100, respectively. The ratio of magnitudes of angular velocity of the planet gear to the angular velocity of the carrier arm is _____.

• Answer: 3

• Sol:
$$N_S = x + y = +100 rpm$$

$$N_A = y - x \ \frac{T_S}{T_A}$$

$$N_A = y - x \ \frac{50}{100} = 0 \qquad 2y = x$$

 $N_P = y - x \frac{T_S}{T_P}$

A CONTRACTOR OF A

4. A gear train shown in the figure consist of gears P, Q, R and S. Gear Q and gear R are mounted on the same shaft. All the gears are mounted on parallel shaft and the number of teeth of P, Q, R and S are 24, 45, 30 and 80, respectively. Gear P is rotating at 400 rpm. The speed (in rpm) of the gear S is_____

• Answer : 120

$$\frac{N_S}{N_P} = \frac{T_P}{T_S}$$

$$N_S = \frac{24}{80} \ge 400 = 120 \ rpm$$

GUNASEKARAN S | AP MECH | THEORY OF MACHINES |SNS INSTITUTIONS

5. In the gear train shown, gear 3 is carried on arm 5. Gear 3 meshes with gear 2 and gear 4. The number of teeth on gear 2, 3, and 4 are 60, 20, and 100, respectively. If gear 2 is fixed and gear 4 rotates with an angular velocity of 100 rpm in the counterclockwise direction, the angular speed of arm 5 (in rpm) is

- (A) 166.7 counterclockwise
- (B) 166.7 clockwise
- (C) 62.5 counterclockwise
- (D) 62.5 clockwise

Answer : (C) 62.5 counterclockwise

$$N_{s=2} = x + y = 0 \qquad y = -x$$

$$N_{4} = y - x \frac{T_{s}}{T_{A}} \qquad N_{4} = y - x (0.6) = 100$$

$$N_{4} = y - x \frac{60}{100} = 100 \qquad y = \frac{100}{1.6} = 62.5 \, rpm \, (C. \, C. \, W)$$

COLUMN THE STREET

 A gear train is made up of five spur gears as shown in the figure. Gear 2 is driver and gear 6 is driven member. N₂, N₃, N₄, N₅ and N₆ represent number of teeth on gears 2,3,4,5, and 6 respectively, The gear(s) which act(s) as idler(s) is/ are
 (A) Only 3

(B) Only 4

(C) Only 5

(D) both 3 and 5 Answer : (C) Only 5

Solution:

$$\frac{N_3}{N_2} X \frac{N_5}{N_4} X \frac{N_6}{N_5} = -\frac{T_2}{T_3} X - \frac{T_4}{T_5} X - \frac{T_5}{T_6} = -\frac{T_2 T_4}{T_3 T_6}$$

N_3	T_2
$\overline{N_2}$ =	$\overline{T_3}$

$$\frac{N_5}{N_4} = -\frac{T_4}{T_5}$$

 $\frac{N_6}{N_5} = -\frac{T_5}{T_6}$