

SNS COLLEGE OF

ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Electronics and Communication Engineering 190E625 - SUSTAINABLE ENERGY SYSTEMS AND TECHNOLOGIES

Introduction to Solar Cells and Solar Modules

Introduction to **Solar Cells and Solar Modules**

Solar cells convert sunlight directly into electricity. Solar modules are panels made of multiple cells, producing higher wattage for practical use.

Photovoltaic Effect and Semiconductor Materials

Photovoltaic Effect

Light energy knocks electrons loose in a semiconductor material, creating an electrical current.

2

Silicon is the most common material used in solar cells, but other materials like gallium arsenide and cadmium telluride are being explored.

Doping Process 3

Adding impurities to the semiconductor creates a ptype or n-type region, facilitating current flow.

Junction Formation

A p-n junction is formed by combining p-type and n-type semiconductors, creating an electric field that drives current flow.

Semiconductor Materials

Structure and Components of Solar Cells

Front Contact

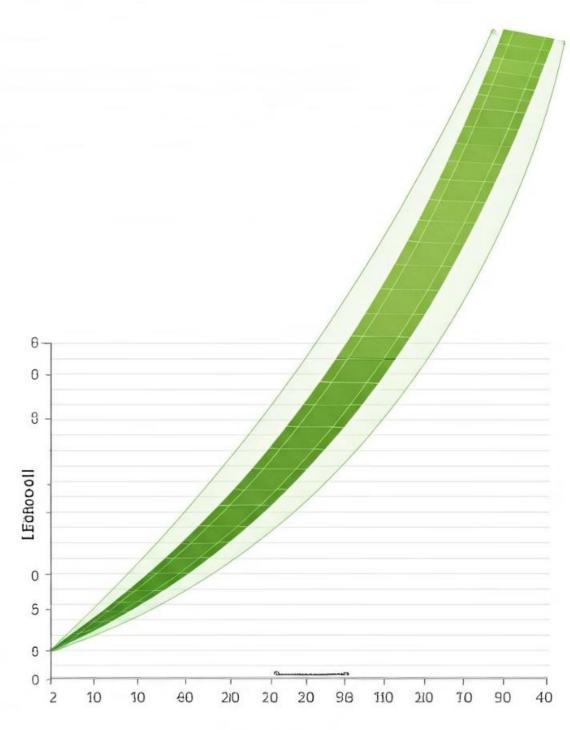
The front surface of the cell, typically with a thin layer of metal for electrical connections.

Anti-reflective Coating

Reduces reflection of light, maximizing the amount of light absorbed by the semiconductor.

p-type and n-type Layers

place.


These layers are the core of the cell, where the photovoltaic effect takes

Made with Gamma

Efficiency and Performance Factors

Factor	Description
Conversion Efficiency	Percentage of light energy converted into electricity.
Temperature Coefficient	Efficiency reduction per degree Celsius increase in temperature.
Spectral Response	Sensitivity of the cell to different wavelengths of light.

Colartflicieetty

Solar Module Design and Configurations

Monocrystalline Modules

Made from a single crystal of silicon, offering higher efficiency but generally more expensive.

Polycrystalline Modules

Made from multiple silicon crystals, lower cost but slightly lower efficiency compared to monocrystalline.

Thin Film Modules

Use thin layers of semiconductor materials, typically less expensive and can be flexible.

Installation and Mounting Considerations

Site Selection

1

Maximize sunlight exposure, consider shading, and roof structure.

Mounting Structure

2 Choose a sturdy mounting system compatible with the roof and modules.

Wiring and Connections

3 Connect modules in series or parallel, ensuring proper grounding and safety.

Grid Tie-in

4 Connect the system to the electrical grid through a certified inverter.

Maintenance and Durability of Solar Systems

Regular Cleaning

Remove dirt and debris from the panels to ensure maximum light absorption.

Monitoring System

3

Use a monitoring system to track performance and detect potential issues.

Visual Inspection

Check for damage, loose connections, or signs of wear and tear.

Component Replacement

Replace damaged or wornout components as needed to ensure optimal performance.

Applications and Future Trends

Grid-tied Systems

Supply electricity to the power grid, reducing reliance on fossil fuels.

Residential Applications

Power homes, reducing energy bills and carbon footprint.

Electric Vehicles

Charge electric vehicles, promoting cleaner transportation.

Space Exploration

Power satellites, space stations, and other space-based missions.

