
SIX-SIGMA APPLICATION IN TIRE-MANUFACTURING COMPANY A CASE STUDY

K.M.EAZHIL ASSISTANT PROFESSOR DEPARTMENT OF MECHANICAL ENGINEERING

WHY SIX SIGMA

- To over come the barriers
- Six Sigma Approach –DMAIC
- •The DMAIC model is very similar to the PDCA (Plan-Do-Check-Act) or PDSA (Plan-Do-Study-Act)

DMAIC- PROCESS

- problem identification –in define
- gathering the specification data in measure
- six sigma quality tools-in analysis and improvement steps
- process control charts- in control

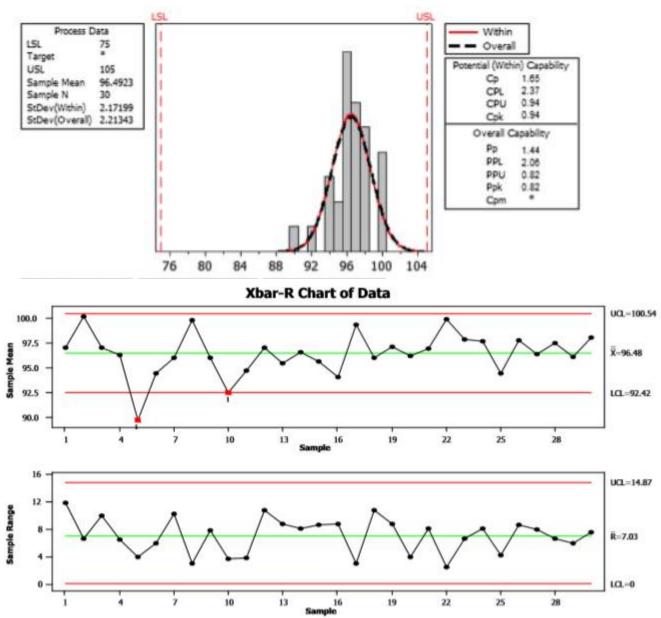
COMPANY PROFILE

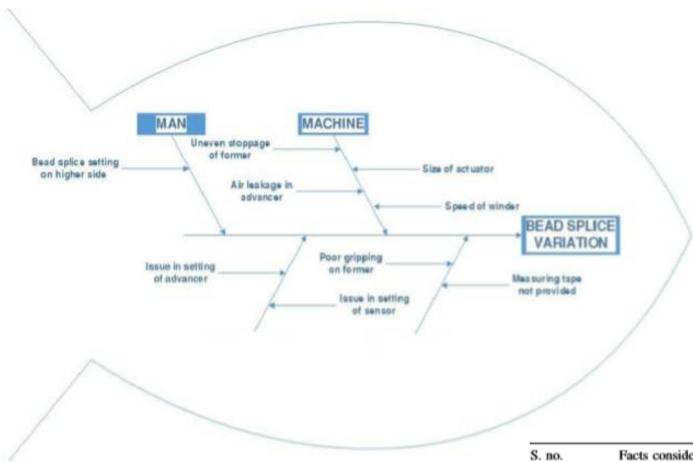
- Company A was the leading Indian tire manufacturing who started exclusive branded outlets of truck tire
- company established a special tubes plant in the year 1996
- In year 2004, company initiated production of high-speed rated tubeless radial tires for passenger cars.

IMPLEMENTATION OF DMAIC METHODOLOGY

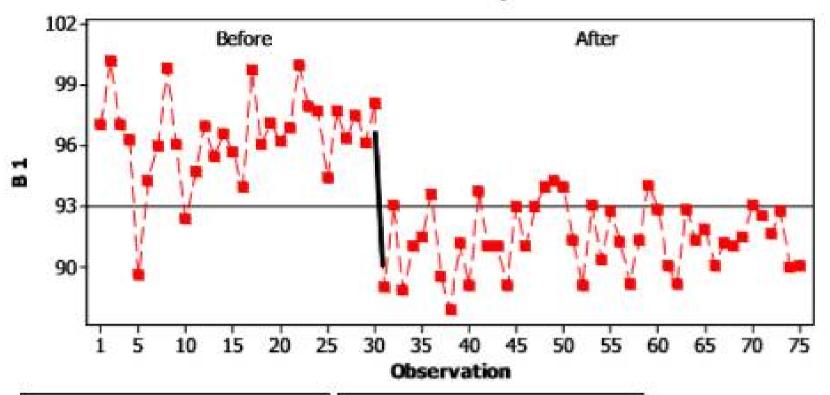
- Problem definition
- Establishment of measures
- Data analysis
- Improve
- Control

Main specification range of bead splice to be produce $90 \pm 15 \text{ mm}$ Average bead splice of tire 97 mm 93-100 kg/m Material loss due to Shifting of Splice from Target Specification


Goodness of Fit Test AD = 0.653P-Value - 0.080

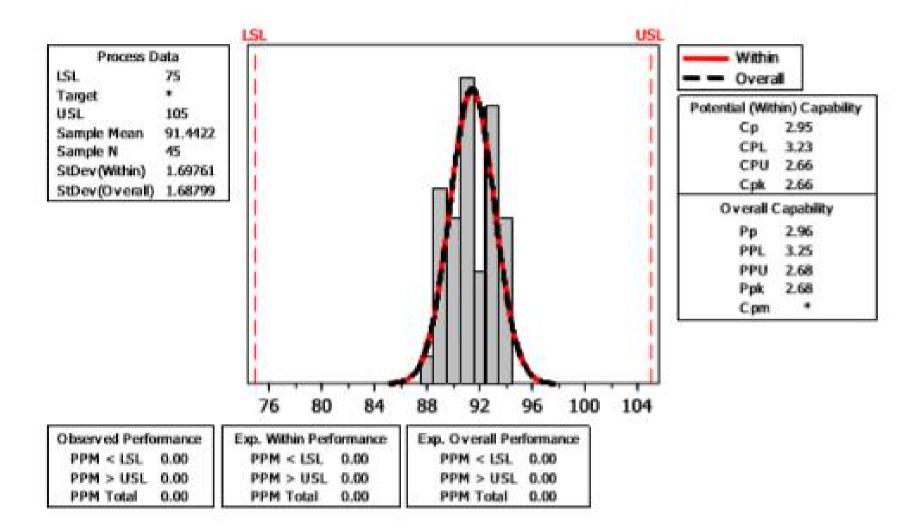

S. no.	Observations	S. no.	Observations
1	97.04	16	94.01
2	100.22	17	99.75
3	97.07	18	96.07
4	96.32	19	97.11
5	89.63	20	96.24
6	94.29	21	96.94
7	96.01	22	99.98
8	99.88	23	97.94
9	96.08	24	97.75
_		25	94.44
10	92.40	26	97.72
11	94.76	27	96.40
12	97.02	28	97.55
13	95.51	29	96.17
14	96.63	30	98.09
15	95.69		

Process Capability of Bead Splice


S. no.	Facts consider for improve	Arrangements
1	Point on higher side	Check bead splice after setup
		2. Set advancer as per guideline to get target v
		3. Set proximity as per guideline of former dia
2	Point on lower side	 Measuring tape for every line
		2. Follow-up should be done on time-to-time b

S. no.	Observations	S. no.	Observations
1	89.0	24	90.4
2	93.1	25	92.8
3	88.9	26	91.3
4	91.1	27	89.2
5	91.5	28	91.4
6	93.6	29	94.1
7	89.6	30	92.9
8	87.9	31	90.1
9	91.2	32	89.2
10	89.1	33	92.9
11	93.8	34	91.4
12	91.1	35	91.9
13	91.1	36	90.1
14	89.1	37	91.2
15	93.0	38	91.1
16	91.1	39	91.5
17	93.0	40	93.1
18	94.0	41	92.6
19	94.3	42	91.7
20	94.0	43	
21	91.4		92.8
22	89.1	44	90.0
23	93.1	45	90.1

Run chart of bead splice



Number of runs about median: 20
Expected number of runs: 38.5
Longest run about median: 20
Approx P-Value for Clustering: 0.000
Approx P-Value for Mixtures: 1.000

Number of runs up or down:	49
Expected number of runs:	49.7
Longest run up or down:	3
Approx P-Value for Trends:	0.427
Approx P-Value for Oscillation:	0.573

Process Capability of Bead Splice - After Improvement

CONCLUSION AND DISCUSSION

- to improve the value of process performance, the root causes of problem were determined with the help of cause and effect diagram
- in the improve phase, statistical analysis was done for identifying the process capability index
- •it can be concluded that process performance of a tire-manufacturing plant can be improved significantly by implementing six-sigma DMAIC methodology

REFERENCE

- 1. Gupta, Vikash; Jain, Rahul; Meena, M. L.; Dangayach, G. S. "Six-sigma application in tire-manufacturing company: A case study" Journal of Industrial Engineering International
- 2. The Certified Six Sigma Yellow Belt Handbook-by Govind Ramu