

SIGNALS AND SYSTEMS

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha /Introduction to Fourier Series

Introduction to Fourier Series

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha /Introduction to Fourier Series

Fourier series

- > Fourier series is a powerful mathematical tool
- Represent periodic functions as a sum of sines and cosines.
- It has vast applications in various fields, including signal processing, physics, and engineering.

Periodic Functions

- > Functions that repeat at regular intervals.
- > The period is the length of one repetition cycle.
- A function x(t) is periodic if there exists a positive number T such that x(t + T) = x(t) for all t.
- The smallest positive value of T for which

x(t + T) = x(t) is called the period of x(t).

Ex. Sine waves, square waves, saw tooth waves, triangular waves

Trigonometric Fourier series represents a periodic
function as an infinite sum of sine and cosine terms,
each with a specific frequency and amplitude.

 $x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos nw_0 t + b_n \sin nw_0 t$

- The coefficients are determined by the function and can be calculated using integrals.
- The frequency ω is determined by the period of the function It represents the number of cycles per unit time.

- Provides a more concise and elegant way to represent periodic functions using complex exponentials.
- > It uses a single coefficient a_n to represent both amplitude and phase.

TrigonometricComplex $x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos nw_0 t + b_n \sin nw_0 t$ $x(t) = \sum_{n=-\infty}^{\infty} a_n e^{jkwt}$ Coefficients: a_n , b_n Coefficient: a_n

- The convergence of a Fourier series refers to whether the series converges to the original function as the number of terms in the series increases.
- The conditions for convergence depend on the properties of the function.

Dirichlet's Condition

The function must be piecewise smooth and have a finite number of discontinuities in one period.

Convergence at Discontinuities

At points of discontinuity, the Fourier series converges to the average of the left and right limits of the function.

Convergence at Continuity

At points of continuity, the Fourier series converges to the value of the function itself.

Applications of Fourier Series

- Signal Processing
- Heat Transfer
- Image Analysis
- Electrical Engineering

