

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

POWER SYSTEM ANALYSIS UNIT – III STEPPER MOTOR

Linear & Non linear Analysis of Stepped
Motor. Won linear Analysis of Stepped
To control the Motors behaviour.
Let Tm = Motor turque produced in notor
T+ J = Inertia & the notor & wad in 1gm²
a) = Angular Velocity of notor.
D = Damping . Coefficient (a) VFC
Tr 2 Frictional load longue
Os = Step argle in radians.
of stepping rate or stepainec
(nutre per second) 1917).

Frictional load torque To = KO Acurdiy to reter dynamies Tm = J da + Da+T, -0 Also Os = DE = Step angle $D = \frac{\theta s}{t} = \frac{1}{t} \theta_s = f \theta_s - 2$ where f = 1 Sub (2) in (1) Im = J of (for) + D (for) + T ostyp angle os = 36001 lonton ot Tm = Jos d (+) + Dos (+) + I The Viscous priction coefficient is reglected is linear one

Linear Analysis
$$D = 0$$
 $Tm = J \frac{d\omega}{dt} + T_f$
 $Tm - T_f = J \frac{d\omega}{dt}$
 $Tm - T_f = \frac{d\omega}{dt}$