
Principal Component Analysis 

 Principal Component Analysis is an unsupervised learning algorithm that is used 

for the dimensionality reduction in machine learning.  

 It is a statistical process that converts the observations of correlated features 

into a set of linearly uncorrelated features with the help of orthogonal 

transformation.  

 These new transformed features are called the Principal Components. It is one 

of the popular tools that is used for exploratory data analysis and predictive 

modeling. 

 It is a technique to draw strong patterns from the given dataset by reducing the 

variances. 

 PCA generally tries to find the lower-dimensional surface to project the high-

dimensional data. 

 PCA works by considering the variance of each attribute because the high 

attribute shows the good split between the classes, and hence it reduces the 

dimensionality.  

 Some real-world applications of PCA are image processing, movie 

recommendation system, optimizing the power allocation in various 

communication channels. 

 It is a feature extraction technique, so it contains the important variables and 

drops the least important variable. 

 The PCA algorithm is based on some mathematical concepts such as: 

Some common terms used in PCA algorithm: 

 Dimensionality: It is the number of features or variables present in the given 

dataset. More easily, it is the number of columns present in the dataset. 

 Correlation: It signifies that how strongly two variables are related to each other. 

Such as if one changes, the other variable also gets changed. The correlation value 

ranges from -1 to +1. Here, -1 occurs if variables are inversely proportional to each 

other, and +1 indicates that variables are directly proportional to each other. 

 Orthogonal: It defines that variables are not correlated to each other, and hence 

the correlation between the pair of variables is zero. 

 Eigenvectors: If there is a square matrix M, and a non-zero vector v is given. Then 

v will be eigenvector if Av is the scalar multiple of v. 

 Covariance Matrix: A matrix containing the covariance between the pair of 

variables is called the Covariance Matrix. 

https://www.javatpoint.com/machine-learning


Principal Components in PCA 

As described above, the transformed new features or the output of PCA are the 

Principal Components. The number of these PCs are either equal to or less than the 

original features present in the dataset. Some properties of these principal 

components are given below: 

o The principal component must be the linear combination of the original features. 

o These components are orthogonal, i.e., the correlation between a pair of variables is 

zero. 

o The importance of each component decreases when going to 1 to n, it means the 1 PC 

has the most importance, and n PC will have the least importance. 

Steps for PCA algorithm 

1. Getting the dataset 

Firstly, we need to take the input dataset and divide it into two subparts X and Y, 

where X is the training set, and Y is the validation set. 

2. Representing data into a structure 

Now we will represent our dataset into a structure. Such as we will represent the 

two-dimensional matrix of independent variable X. Here each row corresponds to 

the data items, and the column corresponds to the Features. The number of 

columns is the dimensions of the dataset. 

3. Standardizing the data 

In this step, we will standardize our dataset. Such as in a particular column, the 

features with high variance are more important compared to the features with 

lower variance. 

If the importance of features is independent of the variance of the feature, then we 

will divide each data item in a column with the standard deviation of the column. 

Here we will name the matrix as Z. 

4. Calculating the Covariance of Z 

To calculate the covariance of Z, we will take the matrix Z, and will transpose it. After 

transpose, we will multiply it by Z. The output matrix will be the Covariance matrix 

of Z. 

5. Calculating the Eigen Values and Eigen Vectors 

Now we need to calculate the eigenvalues and eigenvectors for the resultant 

covariance matrix Z. Eigenvectors or the covariance matrix are the directions of the 

axes with high information. And the coefficients of these eigenvectors are defined 

as the eigenvalues. 

6. Sorting the Eigen Vectors 

In this step, we will take all the eigenvalues and will sort them in decreasing order, 

which means from largest to smallest. And simultaneously sort the eigenvectors 

accordingly in matrix P of eigenvalues. The resultant matrix will be named as P*. 

7. Calculating the new features Or Principal Components 

Here we will calculate the new features. To do this, we will multiply the P* matrix to 



the Z. In the resultant matrix Z*, each observation is the linear combination of 

original features. Each column of the Z* matrix is independent of each other. 

8.  The new feature set has occurred, so we will decide here what to keep and what 

to remove. It means, we will only keep the relevant or important features in the new 

dataset, and unimportant features will be removed out. 

Applications of Principal Component Analysis 

o PCA is mainly used as the dimensionality reduction technique in various AI applications 

such as computer vision, image compression, etc. 

o It can also be used for finding hidden patterns if data has high dimensions. Some fields 

where PCA is used are Finance, data mining, Psychology, etc. 
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