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PART A - (5 X 2 = 10 marks) 

Q.No Question M CO BL 

1.  

What is a Karnaugh Map and how is it used? 

A Karnaugh Map (K-map) is a graphical tool used to simplify Boolean expressions 

by minimizing the number of logic gates required in a digital circuit. It is a grid-

based method that represents truth tables, where adjacent cells differ by only one 

variable. It helps to eliminate redundant terms and reduce complex expressions into 

simpler forms. 

2 CO-1 L -1 

2.  

How does an encoder work? 

An encoder is a combinational logic circuit that converts an active input signal into 

a coded output format. For instance, in a binary encoder, multiple input lines are 

represented in a binary code at the output. Encoders are used in applications where 

fewer output bits are required to represent multiple input lines. 

2 CO-1 L -2 

3.  

State the purpose of a magnitude comparator. 

A magnitude comparator is a digital circuit used to compare two binary numbers 

and determine their relative magnitude. It produces three outputs to indicate whether 

the first number is greater than, less than, or equal to the second number. 

2 CO-1 L -2 

4.  

Define the term "race condition" in sequential circuits. 

A race condition occurs in sequential circuits when the order or timing of signal 

transitions affects the final output. It happens when two or more signals change 

simultaneously and the final output depends on which signal changes first, leading 

to unpredictable behavior in the circuit. 

2 CO-2 L -2 

5.  

Name the different types of flip-flops. 

1. SR flip-flop (Set-Reset) 

2. D flip-flop (Data or Delay) 

3. JK flip-flop 

4. T flip-flop (Toggle) 

2 CO-2 L -1 

 

PART B - (2 X 13 = 26 marks) 

6. (a) Design a full adder and full subtractor using basic logic gates and explain 

its working. 
13 CO-1 L-3 
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Design of Full Adder using Basic Logic Gates 

A full adder is a combinational logic circuit that adds three input bits (two 

significant bits and one carry bit) and produces a sum and a carry output. 

1. Full Adder Truth Table 
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1 1 1 1 1 

2. Logic Expressions 

 Sum (S): S=A⊕B⊕CinS = A \oplus B \oplus 

\text{Cin}S=A⊕B⊕Cin 

 Carry Out (Cout): Cout=(A⋅B)+(B⋅Cin)+(A⋅Cin)\text{Cout} = (A 

\cdot B) + (B \cdot \text{Cin}) + (A \cdot 

\text{Cin})Cout=(A⋅B)+(B⋅Cin)+(A⋅Cin) 

3. Logic Gate Implementation 

1. XOR Gate for Sum: Connect the three inputs AAA, BBB, and 

Cin\text{Cin}Cin to form the sum using the XOR gate: 

S=A⊕B⊕CinS = A \oplus B \oplus \text{Cin}S=A⊕B⊕Cin 

2. AND Gates and OR Gate for Carry Out: 

o Use three AND gates to generate intermediate products: A⋅BA 

\cdot BA⋅B, B⋅CinB \cdot \text{Cin}B⋅Cin, and A⋅CinA \cdot 

\text{Cin}A⋅Cin. 

o Combine the outputs of the three AND gates using an OR gate 

to form the final carry out: 

Cout=(A⋅B)+(B⋅Cin)+(A⋅Cin)\text{Cout} = (A \cdot B) + (B \cdot 

\text{Cin}) + (A \cdot \text{Cin})Cout=(A⋅B)+(B⋅Cin)+(A⋅Cin) 

Full Adder Circuit Diagram 



 The circuit uses two XOR gates for the sum and three AND gates 

along with an OR gate for the carry. 

 

Design of Full Subtractor using Basic Logic Gates 

A full subtractor is a combinational circuit that subtracts three input bits 

(two significant bits and a borrow bit) and produces a difference and a borrow 

output. 

1. Full Subtractor Truth Table 
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2. Logic Expressions 

 Difference (D): D=A⊕B⊕BinD = A \oplus B \oplus 

\text{Bin}D=A⊕B⊕Bin 

 Borrow Out (Bout): Bout=(A‾⋅B)+(B⋅Bin)+(A‾⋅Bin)\text{Bout} = 

(\overline{A} \cdot B) + (B \cdot \text{Bin}) + (\overline{A} \cdot 

\text{Bin})Bout=(A⋅B)+(B⋅Bin)+(A⋅Bin) 

3. Logic Gate Implementation 

1. XOR Gate for Difference: The XOR gate can be used to generate the 

difference of the three inputs AAA, BBB, and Bin\text{Bin}Bin: 

D=A⊕B⊕BinD = A \oplus B \oplus \text{Bin}D=A⊕B⊕Bin 

2. AND, OR, and NOT Gates for Borrow Out: 

o Use NOT gates to invert AAA wherever needed. 

o Combine A‾⋅B\overline{A} \cdot BA⋅B, B⋅BinB \cdot 

\text{Bin}B⋅Bin, and A‾⋅Bin\overline{A} \cdot 

\text{Bin}A⋅Bin using AND gates. 

o Use an OR gate to combine these terms: 



Bout=(A‾⋅B)+(B⋅Bin)+(A‾⋅Bin)\text{Bout} = (\overline{A} \cdot B) 

+ (B \cdot \text{Bin}) + (\overline{A} \cdot 

\text{Bin})Bout=(A⋅B)+(B⋅Bin)+(A⋅Bin) 

Full Subtractor Circuit Diagram 

 The circuit uses XOR gates for the difference calculation and a 

combination of NOT, AND, and OR gates for the borrow output. 

OR 

 

(b) Simplify the following Boolean expression using Karnaugh Map: 

F(A,B,C,D)=Σm(0,1,4,8,9,10)+d(2,11). 

To simplify the Boolean expression using a Karnaugh Map, follow these 

steps: 

Given: 

 Function: F(A,B,C,D)=Σm(0,1,4,8,9,10)F(A,B,C,D) = \Sigma m(0, 

1, 4, 8, 9, 10)F(A,B,C,D)=Σm(0,1,4,8,9,10) 

 Don't care terms: d(2,11)d(2, 11)d(2,11) 

1. Karnaugh Map Layout: 

Construct a 4-variable (16-cell) Karnaugh Map with variables A,B,C,DA, B, 

C, DA,B,C,D. 

AB\

CD 
00 01 11 10 

00 0 1 d(2) 0 

01 1 0 0 0 

11 0 d(11) 0 1 

10 1 1 0 0 

 Σm(0,1,4,8,9,10)\Sigma m(0, 1, 4, 8, 9, 10)Σm(0,1,4,8,9,10) represent 

minterms where the function is 1. 

 d(2,11)d(2, 11)d(2,11) are don't care conditions. 

2. Grouping of 1s and don't care terms: 

Identify the largest possible groups of 1s and don't cares (which can be 

grouped as powers of 2, like 1, 2, 4, or 8 cells): 

 Group 1: Cells (0, 1, 8, 9) → This is a 2x2 block (can include both 

minterms and don't cares). 

 Group 2: Cells (8, 9, 10) → This is a horizontal group of 3 cells, 

covering another portion. 

3. Simplified Boolean Expression: 

 Group 1 (0, 1, 8, 9): This group covers the minterms when 

A′B′A'B'A′B′. So, the simplified expression is A′B′A'B'A′B′. 

13 CO-1 L-3 



 Group 2 (8, 9, 10): This group covers when AAA and C′D′C'D'C′D′, 

resulting in AC′D′A C'D'AC′D′. 

Final Simplified Expression: 

F(A,B,C,D)=A′B′+AC′D′F(A,B,C,D) = A'B' + 

AC'D'F(A,B,C,D)=A′B′+AC′D′ 

This is the simplified Boolean expression using the Karnaugh Map. 

 

 

7. (a) 

Explain the working of a 1:16 Demultiplexer with the help of a block 

diagram and truth table. 

1:16 Demultiplexer 

A 1:16 demultiplexer takes a single input signal and routes it to one of the 

16 outputs based on the value of a 4-bit select input. It essentially works as a 

decoder that selects one of 16 outputs to pass through the input data. The 

remaining 15 outputs will be set to logic LOW. 

Block Diagram 

Below is a conceptual block diagram of a 1:16 Demultiplexer: 

lua 

Copy code 

                 +-----------+ 

                 |   1:16     | 

        Input ---|   DEMUX    |---- Y0 

                 |            |---- Y1 

     S3          |            |---- Y2 

     S2 ----+----|            |---- Y3 

     S1 ----|----|            |---- Y4 

     S0 ----|----|            |---- Y5 

                 |            |---- Y6 

                 |            |---- Y7 

                 |            |---- Y8 

                 |            |---- Y9 

                 |            |---- Y10 

                 |            |---- Y11 

                 |            |---- Y12 

                 |            |---- Y13 

                 |            |---- Y14 

                 |            |---- Y15 

                 +------------+ 

 Input: The single data input. 

 S3, S2, S1, S0: The 4 selection lines (select inputs) that determine 

which output is activated. 

 Y0 to Y15: The 16 possible output lines. 

Truth Table 

The select lines S3,S2,S1,S0S_3, S_2, S_1, S_0S3,S2,S1,S0 determine which 

output is active. The truth table for the 1:16 demultiplexer is shown below: 

13 CO-1 L-2 



S3 S2 S1 S0 Active Output (Yn) 

0 0 0 0 Y0 

0 0 0 1 Y1 

0 0 1 0 Y2 

0 0 1 1 Y3 

0 1 0 0 Y4 

0 1 0 1 Y5 

0 1 1 0 Y6 

0 1 1 1 Y7 

1 0 0 0 Y8 

1 0 0 1 Y9 

1 0 1 0 Y10 

1 0 1 1 Y11 

1 1 0 0 Y12 

1 1 0 1 Y13 

1 1 1 0 Y14 

1 1 1 1 Y15 

Working 

1. Input: The demultiplexer has a single input that can carry either a 

HIGH (1) or LOW (0) logic level. 

2. Selection Lines: The four selection lines (S3, S2, S1, S0) control 

which output will receive the input signal. These lines are used to 

create a binary number that ranges from 0 to 15. Each combination of 

these selection lines corresponds to a unique output. 

3. Output: 

o The input signal will be routed to one of the outputs (Y0 to 

Y15), depending on the value of the select lines. 

o All other outputs will remain LOW (0), while the selected 

output will match the value of the input (either HIGH or 

LOW). 

Example 

 Input = 1 

 Select Lines: S3 = 0, S2 = 1, S1 = 0, S0 = 1 (Selects Y5) 

In this case, the input (which is 1) will be routed to Y5, and all other outputs 

(Y0 to Y4, Y6 to Y15) will remain LOW (0). 

Applications 

 Used in communication systems where a single line is switched to 

multiple receivers. 

 Can be used for data routing in CPUs, memory devices, and other 

circuits. 

OR 

 (b) Explain the operation of a D flip-flop using timing diagrams. 13 CO-2 L-2 



A D flip-flop (Data or Delay flip-flop) is a type of digital memory circuit 

used to store one bit of data. It operates based on a clock signal and outputs 

the value of the input (D) at the moment of a clock edge (typically the rising 

edge). Let’s break down its operation using a timing diagram. 

Components of the D flip-flop: 

1. D (Data Input): The value that will be sampled and stored. 

2. CLK (Clock Signal): The flip-flop captures the value of the data 

input at a specific clock edge. 

3. Q (Output): The stored value after the clock edge. 

4. Q' (Complement Output): The inverse of the stored value (optional). 

Basic Operation: 

 The D flip-flop captures the value of the data input (D) only at the 

rising edge of the clock (if it’s a rising-edge-triggered flip-flop). At 

that moment, the output Q changes to the value of D. 

 Between clock edges, Q remains stable (constant). 

Timing Diagram: 

Let’s look at the sequence of signals: 

markdown 

Copy code 

Clock:  __|‾‾|___|‾‾|___|‾‾|___|‾‾|___ 

D:      __‾‾‾__|‾‾__|______|‾‾‾ 

Q:      ________|‾‾‾‾______|‾‾‾‾ 

 Clock Signal: The flip-flop operates on the rising edge of the clock 

signal, represented by the transitions from low to high (0 to 1). 

 D Input: The value of D changes independently of the clock. The 

flip-flop captures D at the rising clock edge. 

 Q Output: The output follows the input value at the clock edge and 

holds that value until the next clock edge. 

Timing Diagram Explained: 

1. Initial state: At the start, the clock is low, and the value of D is 0. The 

output Q is also 0. 

2. First clock edge: When the clock rises (at the first rising edge), D is 

1. The flip-flop samples D at this moment, so Q changes from 0 to 1. 

3. Between edges: Q holds its value (1) while the clock is low or during 

the falling edge, regardless of changes in D. 

4. Second clock edge: At the next rising clock edge, D is 0. The flip-

flop samples this value, and Q changes from 1 to 0. 

5. Third clock edge: At the third rising edge, D is 1 again. The flip-flop 

captures this, and Q switches back to 1. 

Key Features: 

 Edge-triggered: The flip-flop responds only on the clock edge 

(typically rising, but there are falling-edge-triggered versions). 



 Data storage: The value of Q updates only at the clock edge and 

remains constant between clock edges. 

Summary: 

 On the rising edge of the clock, the output Q takes on the value of D. 

 Q holds its value until the next clock edge, regardless of changes in D. 

This edge-triggered behavior makes the D flip-flop useful in synchronous 

circuits like registers and memory elements, where precise timing and 

synchronization are essential. 

PART C –(1 x 14 = 14 Marks) 

8. (a) Design a combinational circuit for a 3-to-8 line decoder and evaluate its 

performance in terms of delay and power consumption. 

Designing a 3-to-8 Line Decoder 

A 3-to-8 line decoder is a combinational circuit that takes 3 input bits and 

generates 8 output lines, where each output represents a unique combination 

of the input. Only one output will be high (logic 1) for each input 

combination, while the others will be low (logic 0). The function of the 

decoder is to "decode" the binary input into one active output. 

Truth Table for a 3-to-8 Line Decoder: 

Inputs Outputs 

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

Boolean Expressions for Each Output: 

Each output is based on the combination of inputs AAA, BBB, and CCC, and 

the outputs are expressed in terms of ANDed and NOTed inputs: 

 Y0=A‾⋅B‾⋅C‾Y_0 = \overline{A} \cdot \overline{B} \cdot 

\overline{C}Y0=A⋅B⋅C 

 Y1=A‾⋅B‾⋅CY_1 = \overline{A} \cdot \overline{B} \cdot CY1

=A⋅B⋅C 

 Y2=A‾⋅B⋅C‾Y_2 = \overline{A} \cdot B \cdot \overline{C}Y2

=A⋅B⋅C 

 Y3=A‾⋅B⋅CY_3 = \overline{A} \cdot B \cdot CY3=A⋅B⋅C 

 Y4=A⋅B‾⋅C‾Y_4 = A \cdot \overline{B} \cdot \overline{C}Y4

=A⋅B⋅C 

 Y5=A⋅B‾⋅CY_5 = A \cdot \overline{B} \cdot CY5=A⋅B⋅C 

 Y6=A⋅B⋅C‾Y_6 = A \cdot B \cdot \overline{C}Y6=A⋅B⋅C 

14 CO-1 L-3 



 Y7=A⋅B⋅CY_7 = A \cdot B \cdot CY7=A⋅B⋅C 

Circuit Diagram: 

Each output YiY_iYi can be generated using a combination of NOT gates 

and AND gates: 

 NOT gates for generating A‾\overline{A}A, B‾\overline{B}B, and 

C‾\overline{C}C. 

 AND gates for combining inputs as per the Boolean expressions. 

Thus, the 3-to-8 line decoder requires: 

 3 NOT gates for the input inversion. 

 8 3-input AND gates, each taking a specific combination of AAA, 

BBB, CCC, and their complements to produce the corresponding 

output. 

Performance Evaluation: 

1. Delay Analysis: 

The delay in the decoder is typically dependent on the number of logic gates 

that the signal must propagate through. There are two types of gates: NOT 

and AND gates. 

 NOT gate delay: For inverting each input, there is a delay of 1 gate 

level. 

 AND gate delay: Each 3-input AND gate requires multiple gate 

levels (e.g., for combining three inputs), which could be considered as 

one additional gate delay. 

Total delay: 

 The input signal first passes through a NOT gate (1 gate delay) if 

needed. 

 Then it goes through a 3-input AND gate (1 gate delay for the AND 

operation). 

So, the overall delay can be approximated as 2 gate delays (one from the 

NOT gate and one from the AND gate) for each output signal. 

2. Power Consumption: 

Power consumption in a combinational circuit depends on factors like: 

 Static power consumption: Due to leakage currents in the logic gates 

(typically small in modern CMOS technology). 

 Dynamic power consumption: The primary source, which depends 

on the switching activity, capacitance, and supply voltage. 

The dynamic power is given by the formula: P=CL⋅Vdd2⋅f⋅αP = C_L \cdot 

V_{dd}^2 \cdot f \cdot \alphaP=CL⋅Vdd2⋅f⋅α where: 



 CLC_LCL = Load capacitance 

 VddV_{dd}Vdd = Supply voltage 

 fff = Frequency of operation 

 α\alphaα = Switching activity 

For the 3-to-8 decoder: 

 Power is consumed whenever the inputs AAA, BBB, or CCC change, 

causing switching in the NOT and AND gates. 

 The number of gates directly affects power consumption. Since there 

are 8 AND gates and 3 NOT gates, the switching activity across these 

gates will contribute to the overall power consumption. 

Optimization for power: 

 Using low-power logic families like CMOS can help reduce static 

power consumption. 

 Reducing the switching activity (e.g., by ensuring inputs don't change 

frequently) can help lower dynamic power consumption. 

Summary of Performance: 

 Delay: Approximately 2 gate delays (one NOT gate and one AND 

gate for each output). 

 Power consumption: Depends on switching activity, load 

capacitance, and supply voltage; modern CMOS logic typically offers 

low static and dynamic power consumption. 

Further optimizations can be made by using advanced logic synthesis 

techniques or transistor-level design improvements. 

OR 

 (b) 

Design a clocked sequential circuit using SR flip-flops for a specific state 

transition and explain the step-by-step procedure. 

Designing a clocked sequential circuit using SR flip-flops involves defining 

a desired state transition and then mapping it to a circuit. Here's a step-by-

step guide to designing the circuit. 

Problem Statement 

Design a sequential circuit with two states AAA and BBB, where: 

 The circuit starts in state AAA. 

 If the input X=0X = 0X=0, the state remains unchanged. 

 If the input X=1X = 1X=1, the circuit moves to the other state. 

This means the state transitions are as follows: 

 If in state AAA and X=1X = 1X=1, go to state BBB. 

 If in state BBB and X=1X = 1X=1, go back to state AAA. 

Step-by-Step Design Procedure 

14 CO-2 L-3 



1. State Diagram 

First, we create a state diagram to visualize the transitions: 

 State AAA is represented as S0S_0S0. 

 State BBB is represented as S1S_1S1. 

State Transitions:\text{State Transitions:}State Transitions: 

S0→X=1S1andS1→X=1S0S_0 \xrightarrow{X=1} S_1 \quad \text{and} 

\quad S_1 \xrightarrow{X=1} S_0S0X=1S1andS1X=1S0 

S0→X=0S0andS1→X=0S1S_0 \xrightarrow{X=0} S_0 \quad \text{and} 

\quad S_1 \xrightarrow{X=0} S_1S0X=0S0andS1X=0S1 

2. State Table 

Next, we develop a state table. We assign binary values to the states: 

 S0=0S_0 = 0S0=0 

 S1=1S_1 = 1S1=1 

Present 

State (Q) 
Input (X) 

Next 

State 

(Q') 

0 (A) 0 0 (A) 

0 (A) 1 1 (B) 

1 (B) 0 1 (B) 

1 (B) 1 0 (A) 

3. SR Flip-Flop Excitation Table 

The next step is to use the excitation table for the SR flip-flop to determine 

the flip-flop inputs based on state transitions. 

Present 

State 

(Q) 

Next 

State 

(Q') 

SR Flip-Flop 

Inputs (S, R) 

0 0 S = 0, R = 0 

0 1 S = 1, R = 0 

1 0 S = 0, R = 1 

1 1 S = 0, R = 0 

4. Input Combinations Based on State Table 

Now, from the state table and the excitation table, we determine the values of 

the SR flip-flop inputs (S and R) for the transitions. We express S and R as a 

function of XXX and the current state QQQ. 

Q 

(Present 

State) 

X 

(Input) 

S 

(Set) 

R 

(Reset) 

0 0 0 0 

0 1 1 0 



1 0 0 0 

1 1 0 1 

5. Derive Flip-Flop Input Equations 

From the table, we can derive the equations for SSS and RRR. 

 For SSS: S=Q‾⋅XS = \overline{Q} \cdot XS=Q⋅X 

 For RRR: R=Q⋅XR = Q \cdot XR=Q⋅X 

These Boolean equations represent the inputs to the SR flip-flop based on the 

current state QQQ and input XXX. 

6. Circuit Diagram 

Now, we can draw the circuit. The components will be: 

 SR Flip-Flop: with inputs SSS and RRR. 

 Logic Gates: to generate S=Q‾⋅XS = \overline{Q} \cdot XS=Q⋅X and 

R=Q⋅XR = Q \cdot XR=Q⋅X. 

 Clock: to synchronize state transitions. 

The circuit structure is as follows: 

 The output QQQ of the flip-flop is fed into: 

o A NOT gate to generate Q‾\overline{Q}Q. 

o A AND gate with Q‾\overline{Q}Q and XXX to generate 

SSS. 

o A AND gate with QQQ and XXX to generate RRR. 

 The SR flip-flop inputs SSS and RRR are connected as derived. 

7. Circuit Operation 

 If X=0X = 0X=0, both SSS and RRR are 0, meaning no change in 

state. 

 If X=1X = 1X=1 and the present state is Q=0Q = 0Q=0, S=1S = 1S=1 

and R=0R = 0R=0, meaning the flip-flop sets to state 1 (next state is 

S1S_1S1). 

 If X=1X = 1X=1 and the present state is Q=1Q = 1Q=1, S=0S = 0S=0 

and R=1R = 1R=1, meaning the flip-flop resets to state 0 (next state is 

S0S_0S0). 

Conclusion 

The final circuit is a clocked sequential circuit that toggles between two states 

S0S_0S0 and S1S_1S1 based on the input XXX. The SR flip-flop is controlled 

by the logic derived from the state transitions, ensuring that the circuit follows 

the desired behavior. 

 

 

 

 

 


