

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Ch<mark>en</mark>nai

INTRODUCTION TO MOBILE COMPUTING

RANJANI.K/A

The Internet Protocol (IP)

Application Services

(Telnet, FTP, e-mail, WWW)

Reliable Transport Service

(TCP)

Connectionless Packet Delivery Service

(IP)

The Internet Protocol (IP)

- Provides a packet delivery service which is:
 - Unreliable
 - Best-effort
 - Connectionless
- Defines the basic unit of data transfer
- Performs the routing function
- Includes a set of rules that embody the idea of unreliable packet delivery

IP Datagrams

The basic unit of data transfer

IP Datagram Format

0	4	8	16	19	24	31
VERS	HLEN	SERVICE TYPE	TOTAL LENGTH			
	IDENTIFICATION FLAGS FRAGMENT OFFSET					
TIME T	TIME TO LIVE PROTOCOL HEADER CHECKSUM					
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
IP OPTIONS (IF ANY) PADDING						
DATA						

16 bits

IP Datagram Service Type Field

IP Datagram Service Type Field

• In the 1990's the meaning of the service type field was redefined:

0	1	2	3	4	5	6	7
	CODEPOINT					UNU	SED

- For backwards compatibility:
 - When the last three codepoint bits are zero, the first three bits represent 8 classes of service (0 = least important, ..., 7 = most important)

IP Datagram Encapsulation

Datagrams must move from machine to machine via physical networks

What if a datagram won't fit in a frame?

Maximum Transfer Unit (MTU)

 Each physical networking technology limits the amount of data that can fit in a frame

Ethernet: 1500 octets

FDDI: 4470 octets

- This is called the network's MTU
- Limiting datagrams to fit in the smallest possible MTU would make travelling across networks with a larger MTU inefficient
- Allowing datagrams to be larger than a network's MTU means that datagrams will not always fir in a single frame

Datagram Fragmentation

- Divide datagrams too large to fit in one frame into pieces called fragments
- Each fragment should fit into one frame
- Transport fragments over physical network
- Reassemble fragments into the complete datagram

Datagram Fragmentation (cont)

Datagram Fragmentation Example

Datagram Header Data (4000 octets)

Fragment 1 Header Data (1480 octets)

Fragment 2 Header Data (1480 octets)

Fragment 3 Header Data (1040 octets)

Fragment headers duplicate datagram's header (except for FLAGS field)

Datagram Format

0	4	8	16	19	24	31
VERS	HLEN	SERVICE TYPE		TOTAL I	LENGTH	
	IDENTIFICATION FLAGS FRAGMENT OFFSET					
TIME TO LIVE PROTOCOL HEADER CHECKSUM						
	SOURCE IP ADDRESS					
DESTINATION IP ADDRESS						
IP OPTIONS (IF ANY) PADDING						
DATA						

Iago - DIVI, I NAO, IVII

Reassembly of Fragments

- Should fragments be reassembled after crossing one network or should we wait until the fragments arrive at their final destination to reassemble them?
- Advantages?
- Disadvantages?

Internet Datagram Options

- Used for network testing and debugging
- Variable length field (depending on what options are selected)

0 1 2 3 4 5 6 7

Copy Class Option number

- Classes:
 - 0: Datagram or network control
 - o. Batagram of network control
 - 2: Debugging and measurement
- 1: Reserved for future use
- 3: Reserved for future use

Internet Datagram Options (cont)

0 1 2 3 4 5 6 7

Сору	Class	Option number
',		•

Class 0 option numbers:

- 0: End of options list
- 1: No operation
- 2: Security and handling restrictions
- 3: Loose source routing
- 7: Record route
- 8: Stream identifier
- 9: Strict source routing

Class 2 option numbers:

- 4: Internet timestamp

The Record Route Option

- Source creates an empty list of IP addresses in the header
- Set Record route option
- Each router that handles the datagram appends its IP address to the list
- Destination machine can extract and process the route information

Source Route Option

- Sender dictates a path through the internet over which the datagram must travel
- Sender lists IP addresses (in order) of the route the datagram should take
- Sender sets the source route option

Source Route Option (cont)

- Strict source routing the path between two successive addresses in the list must consist of a single physical network
- Loose source routing
 - The datagram must follow the sequence of IP addresses in the list
 - Allows multiple network hops between successive addresses on the list

The Timestamp Option

- Sender creates an empty list in the header
- Sender enables the timestamp option
- Each router that handles the datagram appends to the list its:
 - IP address
 - Local timestamp (in Universal Time)

Processing Options During Fragmentation

0 1 2 3 4 5 6 7

Сору	Class	Option number

- Class 0 option numbers:
 - 0: End of options list
 - 1: No operation
 - 2: Security and handling restrictions
 - 3: Loose source routing
 - 7: Record route
 - 8: Stream identifier
 - 9: Strict source routing

Class 2 option numbers:

- 4: Internet timestamp

Processing Options During Fragmentation (cont)

- When fragmenting a datagram a router:
 - Replicates some IP options in all fragments
 - Example?
 - Replicates some IP options in only one fragment
 - Example?

IP – Security Issues

- Destination IP address is used to route a datagram to its final destination
- Source IP address identifies the sender so that the receiver knows where to send a reply
- IP spoofing sender of a datagram inserts the address of another machine (or a nonexistent machine) in the source address field
 - Prevent the receiver from determining the host from which an attack datagram originated
 - Make the message appear to have originated from a trusted machine
 - Want reply sent to a another (victim) host

Teardrop

- Tool enabled attackers to crash vulnerable remote systems by sending a certain type of fragmented IP datagram
 - Normal datagram fragments do not overlap
 - Teardrop created fragments that did overlap
 - Some implementations of the TCP/IP IP fragmentation re-assembly code do not properly handle overlapping IP fragments
 - Windows and some Linux kernels
 - Caused system to crash
 - Fixed by software patches

Summary

- The Internet Protocol (IP):
 - Provides a packet delivery service which is:
 - Unreliable
 - Best-effort
 - Connectionless
 - Defines the basic unit of data transfer
 - Performs the routing function
 - Includes a set of rules that embody the idea of unreliable packet delivery

Summary (cont)

Application Services

(Telnet, FTP, e-mail, WWW)

Reliable Transport Service

(TCP)

Connectionless Packet Delivery Service

(IP)

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University

Chennai

